Augmented Data Structures

- In practice, it often happens that you want an abstract data type to support additional queries.
 - To implement this, we need to **augment** the underlying data structure.
 - Augmentation often involves storing additional data which facilitates the query.

- Consider AVL tree which supports search, insert, delete in $\Theta(\log n)$ time.
 - What if your ‘boss’ asks you to **additionally** support minimum, maximum, rank, and select?
 - Without augmentation, minimum and maximum take $\Theta(\log n)$ while rank and select require linear time (in-order traversal to retrieve the sorted list of keys).
 - What if your angry boss wants them to be faster?
Augmenting AVL trees

- We can augment AVL trees to support **minimum/maximum** in $\Theta(1)$.
- Just add a pointer to the leftmost/rightmost leaf of the tree.
- After updating the tree by an insert/deleted, make sure that the pointer still points to the smallest/largest element.

![Diagram of an AVL tree with pointers to minimum and maximum elements]
Augmenting AVL trees

- After an insertion, update the minimum pointer
 - If the newly inserted key is less than minimum, update the the minimum pointer to point to it (similar for maximum pointer).
 - It takes an additional time of $\Theta(1)$ (the insertion time is still $\Theta(\log n)$)

- Similar update for max pointer
Augmenting AVL trees

After a deletion, update the maximum pointer
- Check if the maximum element was deleted. If so, update the maximum pointer to the predecessor of the deleted element
- Finding predecessor takes additional time of $\Theta(1)$
 - Let x be the max element before deletion; there is nothing on the right of x.
 - The left subtree of x has zero or one node (otherwise x is unbalanced).
 - If there is an item y on the left of x, then it is the successor of x
 - If x is a leaf, then its parent is the successor

Similar update for max pointer

![Diagram of AVL tree]

min \rightarrow 1 \rightarrow 2 \rightarrow 7 \rightarrow 12
max \leftarrow 31 \rightarrow 24 \rightarrow 15 \rightarrow 10
Augmenting AVL trees

Theorem

We can augment AVL trees by adding only two pointers ($\Theta(1)$) extra space to support minimum/maximum queries in $\Theta(1)$ and without changing time complexity of other queries (insertion, deletion, and search).
Augmenting AVL trees

Can we augment AVL trees to support rank/select operations in $O(\log n)$ time?

- $\text{rank}(x)$ reports the index of key x in the sorted array of keys
- $\text{select}(i)$ returns the key with index i in the sorted array of keys

Idea 1: Store the rank of each node at that node.
- $O(\log n)$ rank and select are guaranteed (why?)
- Is it a good augment data structure? No because inserting an item (e.g., key 1 here) might require updating all stored ranks
- Insertion/deletion take $\Theta(n)$. Failed!
Augmenting AVL trees

Idea 2: At each node, store the size (no. of nodes) of the subtree rooted at that node
 - The size of a node is the sum of the sizes of its two subtrees plus 1.
 - The size of an empty subtree is 0.

The rank of a node \(x \) in its own subtree is the size of its left subtree.
 - E.g., rank of root 12 is 6

![Diagram of AVL tree with node sizes]
Augmenting AVL trees

- Selection on an AVL tree augmented with size data is similar to quickselect, where the root acts as a pivot.
- Select(i): compare i with the rank of the root r (size of left subarray).
 - If equal, return the root r
 - if $i < \text{rank}(\text{root})$, recursively find the same index i in the left subtree
 - if $i > \text{rank}(\text{root})$, recursively find index $i - \text{rank}(\text{root}) - 1$ in the right subtree

E.g., select($x,5$) \rightarrow select($y,5$) \rightarrow select($z,2$) \rightarrow select($w,0$) \rightarrow w (11) is returned
Augmenting AVL trees

select (node, i)

- If node = ∅ then return error (i exceeds number of nodes). [Could have checked this at the root: if i ≥ node.size]
- If i < node.left.size then return select(node.left, i).
- If i > node.left.size then return select(node.right, i - node.left.size - 1).