Comp 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lectures 13, 14 - Jan. 31, Feb. 2, 2018
Not in CLRS; material from another textbook will be posted
University of Manitoba
Skip Lists

- **Randomized** data structure for dictionary ADT
- A hierarchy of ordered linked lists
- A **skip list** for a set S of items is a series of lists S_0, S_1, \ldots, S_h such that:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$
 - List S_0 contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the two special keys

![Skip List Diagram](image-url)
Skip Lists

- A *skip list* for a set S of items is a series of lists S_0, S_1, \cdots, S_h
- A two-dimensional collection of positions: *levels* and *towers*
- Traversing the skip list: after(p), below(p)
Search in Skip Lists

\[\text{skip-search}(L, k) \]

\(L \): A skip list, \(k \): a key

1. \(p \leftarrow \text{topmost left position of } L \)
2. \(S \leftarrow \text{stack of positions, initially containing } p \)
3. \(\text{while } \text{below}(p) \neq \text{null do} \)
 4. \(p \leftarrow \text{below}(p) \)
 5. \(\text{while } \text{key}(\text{after}(p)) < k \text{ do} \)
 6. \(p \leftarrow \text{after}(p) \)
 7. \(\text{push } p \text{ onto } S \)
8. \(\text{return } S \)

- \(S \) contains positions of the largest key \textbf{less than} \(k \) at each level.
- \(\text{after}(\text{top}(S)) \) will have key \(k \), iff \(k \) is in \(L \).
- \textbf{drop down: } \(p \leftarrow \text{below}(p) \)
- \textbf{scan forward: } \(p \leftarrow \text{after}(p) \)
Search in Skip Lists

Example: Skip-Search($S, 87$)

Insert in Skip Lists

- **Skip-Insert**(S, k, v)
 - Randomly compute the height of new item: repeatedly toss a coin until you get tails, let i the number of times the coin came up heads
 - Search for k in the skip list and find the positions p_0, p_1, \cdots, p_i of the items with largest key less than k in each list S_0, S_1, \cdots, S_i (by performing **Skip-Search**(S, k))
 - Insert item (k, v) into list S_j after position p_j for $0 \leq j \leq i$ (a tower of height i)
Insert in Skip Lists

Example: Skip-Insert($S, 52, v$)
Coin tosses: H, T ⇒ $i = 1$
$Skip-Search(S, 52)$
Insert in Skip Lists

Example: Skip-Insert(\(S, 100, v\))
Delete in Skip Lists

Skip-Delete \((S, k)\)

- Search for \(k\) in the skip list and find all the positions \(p_0, p_1, \ldots, p_i\) of the items with the largest key smaller than \(k\), where \(p_j\) is in list \(S_j\). (this is the same as Skip-Search)
- For each \(i\), if \(\text{key}(\text{after}(p_i)) = k\), then remove \(\text{after}(p_i)\) from list \(S_i\)
- Remove all but one of the lists \(S_i\) that contain only the two special keys
Delete in Skip Lists

Example: Skip-Delete($S, 65$)

S_2 $\rightarrow -\infty \rightarrow +\infty$

S_1 $-\infty \rightarrow 37 \rightarrow 83 \rightarrow 94 \rightarrow +\infty$

S_0 $-\infty \rightarrow 23 \rightarrow 37 \rightarrow 44 \rightarrow 69 \rightarrow 79 \rightarrow 83 \rightarrow 87 \rightarrow 94 \rightarrow +\infty$
Skip List Memory Complexity

What is the expected height of a tower?

- 1 if random flip sequence is T, 2 if it is H, T, 3 if it is H, H, T.
- The chance of a tower having height i is $\frac{1}{2^i}$.
- The expected height of a tower will be $X = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \ldots$
- We have $X = 1/2 + 2/4 + 3/8 + 4/16 + 5/32 + 6/64 \ldots$, i.e.,
 $X/2 = 1/4 + 2/8 + 3/16 + 4/32 + 5/64 + \ldots$;
- So, $X - X/2 = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + \ldots = 1$, i.e., $X = 2$.

So, the expected height of a tower is 2, i.e., the expected size of the skip list is $2n \in \Theta(n)$.

Theorem

A skip list that includes n keys is expected to have $\Theta(n)$ nodes.
Skip List Height

- How many levels are expected to be in a linked list of size \(n \)?
 - The chance of a key appearing in less than \(h \) levels is \((1 - \frac{1}{2^h}) \).
 - The chance of **all** keys appearing in less than \(h \) levels is \((1 - \frac{1}{2^h})^n \).
 - Assume \(h = 3 \log n \); the chance of list having at most \(h \) levels is
 \[
 (1 - \frac{1}{2^{3 \log n}})^n = (1 - \frac{1}{n^3})^n > 1 - \frac{1}{n^2}.
 \]
- With a chance of \(1 - \frac{1}{n^2} \), the height of the tree is at most \(2 \log n \).
- This can be used to show the number of levels in a skip list is \(\Theta(\log n) \)

Theorem

The height of a skip list on \(n \) items is expected to be \(\Theta(\log n) \).
Search Time in Skip Lists

- How many nodes are visited for searching a key k?
- Think of backward moves from the lowest level that includes k
 - If it is possible to go up (the key appears in the next level), we go up (with a chance of $1/2$).
 - If not, we stay in the same level and go left (again, with a chance of $1/2$).
- Let $C(j)$ be the maximum number of nodes to be visited when there are j levels above us.
- After a visiting a node at the current level (with cost 1) we have:
 $$C(j) \leq 1 + \frac{1}{2} \cdot C(j - 1) + \frac{1}{2} \cdot C(j)$$
 which gives $C(j) \leq 2j$
- From the previous slide, we know j is expected to be $\Theta(\log n)$.
Search Time in Skip Lists

Theorem

The number of nodes visited when searching for an item in the skip list of n keys is expected to be $\Theta(\log n)$.

- For insert, we do search and add an expected $\Theta(1)$ number of nodes; search time dominates.
- Similarly, for delete, search time dominates.
Summary of Skip Lists

- Expected space usage: $O(n)$
- Expected height: $O(\log n)$
- **Skip-Search**: $O(\log n)$ expected time
- **Skip-Insert**: $O(\log n)$ expected time
- **Skip-Delete**: $O(\log n)$ expected time
- Skip lists are fast and simple to implement in practice