COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lectures 15 - Feb. 5, 2018
CLRS 6.1, 6.2, 6.3
University of Manitoba
A **priority queue** is an abstract data type formed by a set S of key-value pairs

Basic operations include:

- **insert** (k) inserts a new element with key k into S
- **get-Max** which returns the element of S with the largest key
- **extract-Max** which returns the element of S with the largest key and delete it from S

We are often given the whole data and need to **build** the data structure based on it.

- Any data structure for a priority queue should be **constructed** efficiently.
Priority queue implementation

- What is a good implementation (data structure) for priority queues?

- You have seen **binary heaps** before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.

- Is a balanced binary search tree a good implementation of a priority queue?

 - with a little augmentation, get-Max runs in $O(1)$ and extract-Max and insert both can run in $\Theta(\log n)$.

- The problem with BSTs: it is costly to build them

 - How long does it take to form a BST from a given set of items?

 - It takes $\Omega(n \log n)$; otherwise you can sort them in $o(n \log n)$ by building the BST and doing an inoder traverse in $O(n)$.

 - We know we cannot comparison-sort in $o(n \log n)$ and hence cannot build the tree in such time.
Binary heaps

- A **heap** is a **tree** data structure.
- For every node i other than the root, we have $key[parent[i]] \geq key[i]$.
- A **binary** heap is a complete binary tree which can be stored using an array.
 - build-heap takes $\Theta(n)$ time
 - insert, extract-Max take $\Theta(\log n)$
 - get-Max takes $O(1)$
Binary heaps

- Suppose multiple priority queues on different servers.
- Occasionally a server must be rebooted, requiring two priority queues to be merged.
- With a typical binary heap, merging requires concatenating arrays and re-running build-heap; this takes $\Theta(n)$.
- When implementing an abstract data type always consider if you need it to be mergable or not.

![Diagram of binary heaps and their merging process]
Rethinking about Data Structure

- We would like to build a data structure for priority queues that:
 - supports insert, extract-Max, get-Max, and build efficiently (as in binary heaps)
 - merging two priority queues takes $o(n)$

- Solution: **bionomial heaps** which are mergable heaps that efficiently support:
 - `insert(H, x)`
 - `extract-Max(H)`
 - `get-Max(H)`
 - `build(A)`

 - `union(H_1, H_2)` (merge)
 - `increase-key(H, x, k)`
 - `delete(H, x)`
Bionominal Trees

- A **bionomial tree** is an ordered tree defined recursively.
 - children of each node have a specific ordering (similar to ‘left’ and ‘right’ child in binary trees).
- The base case for a bionomial tree B_0 is a single node.
- To build B_k, we take two copies of B_{k-1} and let the first child of the root of the second copy be the root of the first copy.
Fun with Binomial Trees

Fun 1: The children of the root of the binomial tree B_k are the binomial trees $B_{k-1}, \ldots B_0$.

- Induction: assume it is true for all binomial trees B_i with $i \leq k - 1$ (base easily holds).
- The tree B_k has its first child as B_{k-1} (recursive construction).
- With respect to other children, it is a binomial tree B_{k-1} and hence has children B_{k-2}, \ldots, B_0 by induction hypothesis.
Fun with Bionomial Trees

- Fun 2: B_k has 2^k nodes:
 - The recursion is $N(B_k) = 2N(B_{k-1}), N(B_0) = 1$

- B_k has height k:
 - The recursion is $h(B_k) = h(B_{k-1}) + 1$:

- Within B_k there are $\binom{k}{i}$ nodes at depth i.
 - The recursion is $ch(k, i) = ch(k - 1, i - 1) + ch(k - 1, i)$
 - Solving this recursion gives $ch(k, i) = \binom{k}{i}$. To get an idea of the proof, note that $\binom{k}{i} = \binom{k-1}{i-1} + \binom{k-1}{i}$