Picture is from the cover of the textbook CLRS.
To analyze running time of an algorithm (under RAM model) we sum the number of primitive operations and memory accesses of the algorithm.

The cost (running time) of algorithm A for a problem of size n would be a function $T_A(n)$.

How do we compare two different algorithms? say $T_A(n) = \frac{1}{1000} n^3$ and $T_B(n) = 1000n^2 + 500n + 200$.

Summarize the time complexity using asymptotic notations!

Idea: assume the size of input grows to infinity; identify which component of $T_A(n)$ contributes most to the grow of $T_A(n)$.

As n grows:
- constants don’t matter (e.g., $T_A(n)$)
- low-order terms don’t matter (e.g., $T_B(n)$)
Big O Notations

- Informally, \(f(n) = O(g(n)) \) means \(f \) is **asymptotically smaller than or equal to** \(g \).

Definition

\[
f(n) \in O(g(n)) \iff \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n)
\]

- Ignore low-order terms
- Ignore constants
Big O Notations

- E.g., $f(n) = 2n$, $g(n) = n$. Is it that $f(n) \in O(g(n))$?
 - Yes, $f(n)$ is asymptotically smaller than or equal (equal) to $g(n)$.
 - To prove, we should show
 \[\exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n) \]
 - It suffices to define $n_0 = 1$ and $M = 3$, we have $\forall n > 1, 2n \leq 3n$.
 - M could be any number larger than or equal to 2, and n_0 could be any number.

- We require specific values of M (not all choices for M work)
Big O Notations

- E.g., \(f(n) = 2n + 100/n, g(n) = n \). Is it that \(f(n) \in O(g(n)) \)?
 - Yes, again, \(f(n) \) is asymptotically smaller than or equal (equal) to \(g(n) \).
 - To prove, we should show
 \[\exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n) \]
 - It suffices to define \(n_0 = 10 \) and \(M = 3 \), we have \(\forall n > 10, 2n + 100/n \leq 3n \).

- We require specific values of \(M \) and \(n_0 \) (not all choices work)
Let $f(n) = 2018n^2 + 1396n$ and $g(n) = n^3$. Prove $f(n) \in O(g(n))$

We should define M and n_0 s.t. $\forall n > n_0$ we have $2018n^2 + 1396n \leq Mn^3$. This is equivalent to $2018n + 1396 \leq Mn^2$.

We have $2018n + 1396 \leq 2018n + 1396n = 3414n$. So, to prove $2018n + 1396 \leq Mn^2$, it suffices to prove $3414n \leq Mn^2$, i.e., $3414 \leq Mn$. This is always true assuming $M = 1$ and $n \geq 3414$ ($n_0 = 3414$).

Setting $M = 3414$ and $n_0 = 1$ also work!
Informally, \(f(n) = o(g(n)) \) means \(f \) is asymptotically smaller than \(g \).

Definition

\[
f(n) \in o(g(n)) \iff \forall M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) < M \cdot g(n)
\]

ignore low-order terms
Little o Notations

- E.g., $f(n) = 2n$, $g(n) = n$. Is it that $f(n) \in o(g(n))$?
 - No because for $M = 1$, it is not true that $f(n) < Mg(n)$ (i.e., $2n < n$) for large values of n.

![Graph with functions f(n), g(n), and 3g(n)]
Little o Notation

- Prove that \(n^2 \sin(n) + 1984n + 2016 \in o(n^3) \).
 - We have to prove that for all values of \(M \) there is an \(n_0 \) so that for \(n > n_0 \) we have \(n^2 \sin(n) + 1984n + 2016 < Mn^3 \).
 - We know \(n^2 \sin(n) \leq n^2 \), \(1984n \leq 1984n^2 \) and \(2016 \leq 2016n^2 \). So, \(n^2 \sin(n) + 1984n + 2016 \leq (1 + 1984 + 2016)n^2 = 4001n^2 \).
 - So, to prove \(n^2 \sin(n) + 1984n + 2016 < Mn^3 \) it suffices to prove \(4001n^2 < Mn^3 \), i.e., \(4001/M < n \), so, we can define \(n_0 \) to be any value larger than \(4001/M \).
 - For little \(o \), \(n_0 \) is often defined as a function of \(M \).
Big Ω Notation

- $f(n) = o(g(n))$ means f is asymptotically larger than or equal to g.

Definition

$$f(n) \in \Omega(g(n)) \iff \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \geq M \cdot g(n)$$

- Let $f(n) = n/2020$ and $g(n) = \log(n)$. Prove $f(n) \in \Omega(g(n))$.
 - We need to provide M and n_0 so that for all $n \geq n_0$ we have $n/2020 \geq M \log(n)$, i.e., $n \geq 2020M \log(n)$.
 - We know $\log(n) < n$ (assuming $n > 1$). So, in order to show $2020M \log(n) \leq n$, it suffices to have $2020M \leq 1$, i.e., M can be any value smaller than $1/2020$ (and n_0 can be 1 or any other positive integer).
Little ω Notation

- $f(n) = \omega(g(n))$ means f is \textit{asymptotically larger than} g.

Definition

$f(n) \in \omega(g(n)) \iff \forall M > 0, \exists n_0 > 0$ s.t. $\forall n > n_0, f(n) > M \cdot g(n)$

- Let $f(n) = n/2020$ and $g(n) = \log(n)$. Prove $f(n) \in \omega(g(n))$.
 - For any constant M we need to provide n_0 so that for all $n \geq n_0$ we have $n/2020 > M \log(n)$, i.e., $n > 2020M \log(n)$.
 - We know $\log(n) < \sqrt{n}$ (assuming $n > 4$). So, in order to show $2020M \log(n) < n$, it suffices to have $2020M \sqrt{n} < n$, i.e., $2020M < \sqrt{n}$. For that, it suffices to have $(2020M)^2 < n$, i.e., n_0 can be defined as $\max\{4, (2020M)^2\}$.
 - Similarly to little o, for ω, we often need to define n_0 as a function of M.
θ Notation

- Informally $f(n) = \Theta(g(n))$ means f is asymptotically equal to g.

Definition

$$f(n) \in \Theta(g(n)) \iff \exists M_1, M_2 > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, M_1 \cdot g(n) \leq f(n) \leq M_2 \cdot g(n)$$

- Let $f(n) = n$ and $g(n) = n/2020$. Prove $f(n) \in \Theta(g(n))$.
 - We need to provide M_1, M_2, n_0 so that for all $n \geq n_0$ we have $M_1 \cdot n/2020 \leq n \leq M_2 \cdot n/2020$.
 - For the first inequality, we can have $M_1 = 1$ and for all n we have $n/2020 \leq n$.
 - For the second inequality, we let M_2 to be any constant larger than 2020 which gives $M_2/2020 \geq 1$.
 - n_0 can be any value, e.g., $n_0 = 1$.
Common Growth Rates

- \(\Theta(1) \rightarrow \) constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- \(\Theta(\log n) \rightarrow \) logarithmic complexity
 - Binary search
- \(\Theta(n) \rightarrow \) linear complexity
 - Most practical algorithms :)
- \(\Theta(n \log n) \rightarrow \) pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- \(\Theta(n^2) \rightarrow \) Quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)
- \(\Theta(n^3) \rightarrow \) Cubic Complexity
 - naive matrix multiplication
- \(\Theta(2^n) \rightarrow \) Exponential Complexity
 - The ‘algorithm’ terminates but the universe is likely to end much earlier even if \(n \approx 1000 \).