COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 6 - Jan. 15, 2018
CLRS 7.1, 7-4, 9.1, 9.3
University of Manitoba
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)
- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.
- The best-case running time is?
 - It is $\Theta(n \log n)$, when there are a linear number (e.g., roughly half) of items on each side of pivots.
- The average-case running time is?
 - When the input is shuffled, the running time is $\Theta(n \log n)$.

COMP 3170 - Analysis of Algorithms & Data Structures
A sorting algorithm is **comparison-based** if it can sort any array of objects by just pairwise comparison of them.

- E.g., you want to sort a bag of potatoes using a balance scale.

It is known that any comparison-based sorting algorithm runs in $\Omega(n \log n)$ in the worst-case.

Can we improve the worst-case running time $\Theta(n^2)$ of Quick-sort to $\Theta(n \log n)$?

- This relates to the **selection problem**
The i’th order statistic of a set of comparable elements is the i’th smallest value in the set.

- The $\lceil n/2 \rceil$’th order statistic among n items is called **median**.
- The $\lceil n/4 \rceil$’th order statistic among n items is called **quartile**.

How can we find the 0’th or $(n − 1)$’th order statistic in $\Theta(n)$.

- Finding min/max \rightarrow a linear scan is sufficient!

Selection problem: find the i’th order statistics:

- The input is a set of n comparable objects (e.g., integers) and an integer i
- The output is the element at index i of the sorted array ($i + 1$’th smallest item)
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- Attempt II: apply `heapify` on A and `extract-min` $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n/\log n)$.

- What is the minimum time required for selection?
 - We need to read the whole input, i.e., the running time of any algorithm is $\Omega(n)$.
 - Can we select in $\Theta(n)$?
Selection algorithms

- Quick-select: similar to Quick-sort, but for selection
- Select a pivot, partition around it, and recurs on the one side that contains the i'th element
QuickSelect Algorithm

quick-select1(A, i)
A: array of size n, i: integer s.t. 0 ≤ i < n
1. p ← choose-pivot1(A)
2. j ← partition(A, p)
3. if j = i then
4. return A[j]
5. else if j > i then
6. return quick-select1(A[0, 1, . . . , j − 1], i)
7. else if j < i then
8. return quick-select1(A[j + 1, j + 2, . . . , n − 1], i − j − 1)

Here the pivot is selected arbitrarily (e.g., the first item in the array)
Analysis of quick-select

Worst-case analysis: Recursive call could always have size $n - 1$.

Recurrence given by

$$T(n) = \begin{cases}
T(n - 1) + cn, & n \geq 2 \\
\quad d, & n = 1
\end{cases}$$

Solution:

$$T(n) = cn + c(n - 1) + c(n - 2) + \cdots + c \cdot 2 + d \in \Theta(n^2)$$

Best-case analysis: First chosen pivot could be the kth element

No recursive calls; total cost is $\Theta(n)$.
Average-case analysis of quick-select

Assume all $n!$ permutations are equally likely.

Define $T(n, i)$ as average cost for selecting ith item from size-n array:

$$T(n, i) = cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1, i-j-1) + \sum_{j=i+1}^{n-1} T(j, i) \right)$$

We could analyze this recurrence directly, or be a little lazier and still get the same asymptotic result.

For simplicity, define $T(n) = \max_{0 \leq k < n} T(n, k)$.
Average-case analysis of quick-select

The cost is determined by j, the position of the pivot $A[0]$. For more than half of the $n!$ permutations, $\frac{n}{4} < i < \frac{3n}{4}$.

In this case, the recursive call will have length at most $\lfloor \frac{3n}{4} \rfloor$, for any k.

The average cost is then given by:

$$T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T\left(\lfloor 3n/4 \rfloor \right) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}$$

Rearranging gives:

$$T(n) \leq 2cn + T\left(\lfloor 3n/4 \rfloor \right) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d$$

$$\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)$$

Since $T(n)$ must be $\Omega(n)$ (why?), $T(n) \in \Theta(n)$.

COMP 3170 - Analysis of Algorithms & Data Structures
Linear-time selection

- Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.
- Is there any selection algorithm that runs in $O(n)$ in the worst-case?
 - The answer is Yes; **Median of medians** algorithms!
 - It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
- Partition the whole array using x as the pivot
- Recurs on the corresponding subarray as in Quick-select