COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 7 - Jan. 17, 2018
CLRS 7.1, 7-4, 9.1, 9.3
University of Manitoba
QuickSelect Review

quick-select1(A, i)
A: array of size n, i: integer s.t. $0 \leq i < n$
1. $p \leftarrow \text{choose-pivot1}(A)$
2. $j \leftarrow \text{partition}(A, p)$
3. if $j = i$ then
4. return $A[j]$
5. else if $j > i$ then
6. return quick-select1($A[0, 1, \ldots, j - 1], i$)
7. else if $j < i$ then
8. return quick-select1($A[j + 1, j + 2, \ldots, n - 1], i - j - 1$)

- If pivot is at position j, the cost of recursive call parameters will be:
 - None if $j = i$.
 - (j, i) if $j > i$ (recursing on the left subarray).
 - $(n - j - 1, i - j - 1)$ if $j < i$ (recursing on the right subarray).
Average-case analysis of quick-select

Assume all $n!$ permutations are equally likely.

Define $T(n, i)$ as average cost for selecting ith item from size-n array:

The cost for recursive calls (RC) is

$$RC = \begin{cases} 0 & j = i \\ T(j, i) & j > i \\ T(n - j - 1, i - j - 1) & j < i \end{cases}$$

Shuffled input \rightarrow it is equally likely for the pivot to be at any position:

$$T(n, i) = \underbrace{cn}_{\text{partition}} + \frac{1}{n} \left((\text{RC if } j=0) + (\text{RC if } j=1) + \ldots + (\text{RC if } j=n-1) \right)$$

$$= \underbrace{cn}_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1, i - j - 1) + \sum_{j=i+1}^{n-1} T(j, i) \right)$$

For simplicity, define $T(n) = \max_{0 \leq k < n} T(n, k)$.

COMP 3170 - Analysis of Algorithms & Data Structures
Average-case analysis of quick-select

\[T(n) \leq \begin{cases}
 cn & \text{partition} \\
 \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right)
\end{cases} \]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.
- The recursive cost for a good pivot is at most \(T(3n/4) \).
- The recursive cost for a bad pivot is at most \(T(n) \).

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) \right. & \text{bad pivot} \\
 & \left. + T(\lfloor 3n/4 \rfloor) \right), \quad n \geq 2 \\
 d & n = 1
\end{cases}
\]
Average-case analysis of quick-select 1

The average cost is then given by:

\[T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d, & n = 1
\end{cases} \]

Rearranging gives:

\[T(n) \leq 2cn + T(\lfloor 3n/4 \rfloor) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d \leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n) \]

Since \(T(n) \) must be \(\Omega(n) \) (why?), \(T(n) \in \Theta(n) \).
Linear-time selection

- Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.
- Is there any selection algorithm that runs in $O(n)$ in the worst-case?
 - The answer is Yes; Median of medians algorithms!
 - It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
 - x will be the pivot for quick-select
- Partition the whole array using x as the pivot
- Recurs on the corresponding subarray as in Quick-select
Median of five example

Find X, the median of medians
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $< x$.
 - This implies half of blocks include at least 3 elements $< x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x.

- Similarly, there will be at least $3n/10$ elements larger than x.

- We assume distinct items; when pivot is equal to multiple items, you can update the partition algorithm so that the pivot is the ‘best’ among items with the same key.

- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot.

- In the worst case, the size of recursive call is always $7n/10$.

$$T(n) \leq \begin{cases}
T(n/5) + cn & n \geq 2 \\
\underbrace{T(n/5)}_{\text{find } x} + \underbrace{cn}_{\text{partition around } x} + \underbrace{T(7n/10)}_{\text{recursive call}} & n = 1
\end{cases}$$
Median of five algorithm

\[
T(n) \leq \begin{cases}
T(n/5) + \underbrace{\text{find } x}_{d,} + \underbrace{\text{partition around } x}_{cn} + T(7n/10), & n \geq 2 \\
 n = 1
\end{cases}
\]

- We **guess** that \(T(n) \in O(n) \) and use **strong** induction to prove it.
- We prove there is a value \(M \) s.t. \(T(n) \leq Mn \) for all \(n \geq 1 \).
- For the base we have \(T(1) = d \leq M \) as long as \(M \geq d \).
- For any value of \(n \) we can state:

\[
T(n) \leq T(n/5) + T(7n/10) + cn \quad \text{(definition)}
\]

\[
\leq M \cdot n/5 + M \cdot 7n/10 + cn \quad \text{(induction hypothesis)}
\]

\[
= (9M/10 + c)n
\]

\[
\leq M \cdot n \quad \text{as long as } M \geq 9M/10 + c, \ i.e., \ M \geq 10c
\]

so, we showed for \(M = \max\{10c, d\} \) we have \(T(n) \leq M \cdot n \) for \(n \geq 1 \). So, \(T(n) \in O(n) \).
Quick-sort revisit

Theorem

It is possible to select the *i*’th smallest item in a list of *n* numbers in time \(\Theta(n) \)

- Quick-sort in \(O(n \log n) \) time:
 - Using select algorithm to choose the pivot as the **median** of *n* items in \(O(n) \) time
 - Partition around pivot in \(O(n) \) time (selecting pivot as \(n/c’ \)th smallest item for constant \(c \) gives the same result)
 - Sort the two sides of pivot recursively in time \(2T(n/2) \).

- The cost will be \(T(n) = 2T(n/2) + \Theta(n) \), which gives \(T(n) = \Theta(n \log n) \) [case II of Master theorem]

Theorem

A smart selection of pivot, using linear-time select, results in quick-sort running in \(\Theta(n \log n) \)