COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 7 - Jan. 17, 2018

CLRS 7.1, 7-4, 9.1, 9.3

University of Manitoba
QuickSelect Review

\[
\text{quick-select1}(A, i)
\]

\[A: \text{array of size } n, \quad i: \text{integer s.t. } 0 \leq i < n\]

1. \(p \leftarrow \text{choose-pivot1}(A)\)
2. \(j \leftarrow \text{partition}(A, p)\)
3. \(\text{if } j = i \text{ then}\)
4. \(\quad \text{return } A[j]\)
5. \(\text{else if } j > i \text{ then}\)
6. \(\quad \text{return } \text{quick-select1}(A[0, 1, \ldots, j - 1], i)\)
7. \(\text{else if } j < i \text{ then}\)
8. \(\quad \text{return } \text{quick-select1}(A[j + 1, j + 2, \ldots, n - 1], i - j - 1)\)

- If pivot is at position \(j\), the cost of recursive call parameters will be:
 - None if \(j = i\).
 - \((j, i)\) if \(j > i\) (recursing on the left subarray).
 - \((n - j - 1, i - j - 1)\) if \(j < i\) (recursing on the right subarray).
Average-case analysis of quick-select

Assume all $n!$ permutations are equally likely.

Define $T(n, i)$ as average cost for selecting ith item from size-n array:

The cost for recursive calls (RC) is

$$RC = \begin{cases}
0 & j = i \\
T(j, i), & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}$$

Shuffled input \rightarrow it is equally likely for the pivot to be at any position:

$$T(n, i) = cn\underbrace{\text{partition}}_{\text{partition}} + \frac{1}{n} \left((\text{RC if } j=0) + (\text{RC if } j=1) + \ldots + (\text{RC if } j=n-1) \right)$$

$$= cn\underbrace{\text{partition}}_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1, i - j - 1) + \sum_{j=i+1}^{n-1} T(j, i) \right)$$

For simplicity, define $T(n) = \max_{0 \leq k < n} T(n, k)$.

Average-case analysis of quick-select

\[T(n) \leq cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right) \]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.
- The recursive cost for a good pivot is at most \(T(3n/4) \).
- The recursive cost for a bad pivot is at most \(T(n) \).

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T\left(\left\lfloor 3n/4 \right\rfloor \right) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]
The average cost is then given by:

$$T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T\left(\lfloor 3n/4 \rfloor \right) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}$$

Rearranging gives:

$$T(n) \leq 2cn + T\left(\lfloor 3n/4 \rfloor \right) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d$$

$$\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)$$

Since $T(n)$ must be $\Omega(n)$ (why?), $T(n) \in \Theta(n)$.
Linear-time selection

- Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.
- Is there any selection algorithm that runs in $O(n)$ in the worst-case?
 - The answer is Yes; **Median of medians** algorithms!
 - It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
 - x will be the pivot for quick-select
- Partition the whole array using x as the pivot
- Recurs on the corresponding subarray as in Quick-select
Median of five example

Find X, the median of medians
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $\leq x$.
 - This implies half of blocks include at least 3 elements $\leq x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x.

- Similarly, there will be at least $3n/10$ elements larger than x.

- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot

- In the worst case, the size of recursive call is always $7n/10$.

$$T(n) \leq \begin{cases}
T(n/5) + \underbrace{cn}_{\text{partition around } x} + T(7n/10), & n \geq 2 \\
\underbrace{d, \text{ find } x}_{\text{recursive call}}, & n = 1
\end{cases}$$
Median of five algorithm

\[T(n) \leq \begin{cases}
\frac{T(n/5)}{d} + \frac{cn}{\text{partition around}} + \frac{T(7n/10)}{\text{recursive call}} & n \geq 2 \\
\text{find } x & n = 1
\end{cases} \]

- We guess that \(T(n) \in O(n) \) and use induction to prove it.
- We prove there is a value \(M \) s.t. \(T(n) \leq Mn \) for all \(n \geq 1 \).
- For the base we have \(T(1) = d \leq M \) as long as \(M \geq d \).
- For any value of \(n \) we can state:

\[
T(n) \leq T(n/5) + T(7n/10) + cn \quad \text{(definition)}
\leq M \cdot n/5 + M \cdot 7n/10 + cn \quad \text{(induction hypothesis)}
= (9M/10 + c)n
\leq M \cdot n \quad \text{as long as } M \geq 9M/10 + c, \text{i.e., } M \geq 10c
\]

so, we showed for \(M = \max\{10c, d\} \) we have \(T(n) \leq M \cdot n \) for \(n \geq 1 \). So, \(T(n) \in O(n) \).
Quick-sort revisit

Theorem

It is possible to select the i’th smallest item in a list of n numbers in time $\Theta(n)$

- Quick-sort in $O(n \log n)$ time:
 - Using select algorithm to choose the pivot as the median of n items in $O(n)$ time
 - Partition around pivot in $O(n)$ time (selecting pivot as n/c’th smallest item for constant c gives the same result)
 - Sort the two sides of pivot recursively in time $2T(n/2)$.

- The cost will be $T(n) = 2T(n/2) + \Theta(n)$, which gives $T(n) = \Theta(n \log n)$ [case II of Master theorem]

Theorem

A smart selection of pivot, using linear-time select, results in quick-sort running in $\Theta(n \log n)$