COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 8 - Jan. 19, 2018
CLRS 12.2, 12.3, 13.2, read problem 13-3
University of Manitoba
Dictionary ADT

Definition

A dictionary is a collection S of items, each of which contains a key and some data, and is called a key-value pair (KVP).

- Keys can be compared and are (typically) unique.
- We often focus on keys; associating data with keys is easy.

Operations:

- $search(x)$: return true iff $x \in S$
- $insert(x, v)$: $S \leftarrow S \cup \{x\}$
- $delete(x)$: $S \leftarrow S \setminus \{x\}$
- additional: $join$, $isEmpty$, $size$, etc.
Optional Operations

In addition to the main operations (search, insert, delete), the followings are useful:

- \textit{predecessor}(x): return the largest \(y \in S \) such that \(y < x \)
- \textit{successor}(x): return the smallest \(y \in S \) such that \(y > x \)
- \textit{rank}(x): return the index of \(x \) in the sorted array
- \textit{select}(i): return the key at index \(i \) in the sorted array \(\rightarrow i \)’th order statistic
- \textit{isEmpty}(x): return true if \(S \) is empty
Dictionaries

- Dictionary is a collection of key-value pairs with the support of search, insert, delete (and possibly some other operations).
- There is a total ordering of elements, i.e., keys are comparable.
- Is dictionary an abstract data type or a data structure?
 - It is an abstract data type; we did not discuss implementation.
 - Different data structures can be used to implement dictionaries.
Elementary Implementations

- **Common assumptions:**
 - Dictionary has n KVPs
 - Each KVP uses constant space
 - Comparing keys takes constant time

- **Unsorted array or linked list**
 - $\text{search } \Theta(n)$
 - $\text{insert } \Theta(1)$
 - $\text{delete } \Theta(n)$ (need to search)

- **Sorted array**
 - $\text{search } \Theta(\log n)$
 - $\text{insert } \Theta(n)$
 - $\text{delete } \Theta(n)$
Data Structures for Dictionaries

<table>
<thead>
<tr>
<th></th>
<th>space</th>
<th>search</th>
<th>insert/delete</th>
<th>predecessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array, linked list</td>
<td>$\Theta(n + a)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)/\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>sorted array</td>
<td>$\Theta(n + a)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>sorted linked-list</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>unbalanced BST</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>balanced BST</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>hash tables</td>
<td>$\Theta(n + a)$</td>
<td>$\Theta(1)^*$</td>
<td>$\Theta(1)^*$</td>
<td>$\Theta(n + a)$</td>
</tr>
<tr>
<td>skip list</td>
<td>$\Theta(n)^*$</td>
<td>$\Theta(\log n)^*$</td>
<td>$\Theta(\log n)^*$</td>
<td>$\Theta(\log n)^*$</td>
</tr>
</tbody>
</table>

- n: number of KVPs.
- a: the length of array; when we use sorted/unordered arrays, $a \geq n$.
- *: expected time/space
Binary Search Trees (review)

Structure A BST is either empty or contains a KVP, left child BST, and right child BST.

Ordering Every key \(k \) in \(T.left \) is less than the root key.
Every key \(k \) in \(T.right \) is greater than the root key.
BST Search and Insert

\[\text{search}(k)\] Compare \(k\) to current node, stop if found, else recurse on subtree unless it’s empty

\[\text{insert}(k, v)\] Search for \(k\), then insert \((k, v)\) as new node

Example:
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor or predecessor node and then delete
Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are *inserted* one-at-a-time, how big is h?

- **Worst-case:**
- **Best-case:**
- **Average-case:**