COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lectures 13, 14 - Jan. 31, Feb. 2, 2018

Not in CLRS; material from another textbook will be posted

University of Manitoba
Skip Lists

- **Randomized** data structure for dictionary ADT
- A hierarchy of ordered linked lists
- A **skip list** for a set S of items is a series of lists S_0, S_1, \ldots, S_h such that:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$
 - List S_0 contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the two special keys

![Diagram of Skip Lists](image-url)
A skip list for a set S of items is a series of lists S_0, S_1, \cdots, S_h.

A two-dimensional collection of positions: levels and towers.

Traversing the skip list: after(p), below(p)
Search in Skip Lists

\[\text{skip-search}(L, k) \]

\(L \): A skip list, \(k \): a key

1. \(p \leftarrow \text{topmost left position of } L \)
2. \(S \leftarrow \text{stack of positions, initially containing } p \)
3. \(\text{while } \text{below}(p) \neq \text{null} \text{ do} \)
4. \(p \leftarrow \text{below}(p) \)
5. \(\text{while key(after(p))} < k \text{ do} \)
6. \(p \leftarrow \text{after}(p) \)
7. \(\text{push } p \text{ onto } S \)
8. \(\text{return } S \)

- \(S \) contains positions of the largest key less than \(k \) at each level.
- \(\text{after(top}(S)) \) will have key \(k \), iff \(k \) is in \(L \).
- drop down: \(p \leftarrow \text{below}(p) \)
- scan forward: \(p \leftarrow \text{after}(p) \)
Search in Skip Lists

Example: Skip-Search(S, 87)
Search in Skip Lists

Example: Skip-Search($S, 87$)
Search in Skip Lists

Example: Skip-Search($S, 87$)
Search in Skip Lists

Example: Skip-Search($S, 87$)
Example: Skip-Search($S, 87$)
Insert in Skip Lists

- **Skip-Insert**\((S, k, v)\)
 - Randomly compute the height of new item: repeatedly toss a coin until you get tails, let \(i\) the number of times the coin came up heads
 - Search for \(k\) in the skip list and find the positions \(p_0, p_1, \cdots, p_i\) of the items with largest key less than \(k\) in each list \(S_0, S_1, \cdots, S_i\) (by performing \(\text{Skip-Search}(S, k)\))
 - Insert item \((k, v)\) into list \(S_j\) after position \(p_j\) for \(0 \leq j \leq i\) (a tower of height \(i\))
Insert in Skip Lists

Example: Skip-Insert($S, 52, v$)
Coin tosses: H, T ⇒ $i = 1$
Insert in Skip Lists

Example: Skip-Insert(S, 52, v)
Coin tosses: H, T ⇒ i = 1
Skip-Search(S, 52)
Insert in Skip Lists

Example: Skip-Insert(\(S, 52, v\))
Coin tosses: H, T \(\Rightarrow i = 1\)
Example: Skip-Insert(S, 100, ν)
Coin tosses: H,H,H,T ⇒ i = 3
Insert in Skip Lists

Example: Skip-Insert(\(S, 100, v\))
Coin tosses: H,H,H,T \(\Rightarrow\) \(i = 3\)
Skip-Search(\(S, 100\))
Insert in Skip Lists

Example: Skip-Insert\((S, 100, v)\)
Coin tosses: H, H, H, T \(\Rightarrow i = 3\)
Height increase
Delete in Skip Lists

Skip-Delete \((S, k)\)

- Search for \(k\) in the skip list and find all the positions \(p_0, p_1, \ldots, p_i\) of the items with the largest key smaller than \(k\), where \(p_j\) is in list \(S_j\). (this is the same as Skip-Search)
- For each \(i\), if \(\text{key}(\text{after}(p_i)) == k\), then remove \(\text{after}(p_i)\) from list \(S_i\)
- Remove all but one of the lists \(S_i\) that contain only the two special keys
Delete in Skip Lists

Example: Skip-Delete(\(S, 65\))
Delete in Skip Lists

Example: Skip-Delete($S, 65$)
Skip-Search($S, 65$)
Delete in Skip Lists

Example: Skip-Delete(S, 65)
Skip List Memory Complexity

What is the expected height of a tower?

1 if random flip sequence is T, 2 if it is H, T, 3 if it is H, H, T.

The chance of a tower having height i is $\frac{1}{2^i}$.

The expected height of a tower will be $X = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 4 \cdot \frac{1}{16} + 5 \cdot \frac{1}{32} + 6 \cdot \frac{1}{64} + \ldots$

We have $X = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \frac{6}{64} + \ldots$, i.e., $X - \frac{X}{2} = 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{8} + 1 \cdot \frac{1}{16} + 1 \cdot \frac{1}{32} + 1 \cdot \frac{1}{64} + \ldots = 1$, i.e., $X = 2$.

So, the expected height of a tower is 2, i.e., the expected size of the skip list is $\Theta(n)$.

Theorem A skip list that includes n keys is expected to have $\Theta(n)$ nodes.
What is the expected height of a tower?

- 1 if random flip sequence is T, 2 if it is H, T, 3 if it is H, H, T.
- The chance of a tower having height i is $\frac{1}{2^i}$.

The expected height of a tower will be $X = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 4 \cdot \frac{1}{16} + 5 \cdot \frac{1}{32} + 6 \cdot \frac{1}{64} + \ldots$

We have $X = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \frac{6}{64} + \ldots$, i.e., $X - \frac{X}{2} = 1 + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \frac{6}{64} + \ldots = 1$, i.e., $X = 2$.

So, the expected height of a tower is 2, i.e., the expected size of the skip list is $\Theta(n)$.

Theorem

A skip list that includes n keys is expected to have $\Theta(n)$ nodes.
Skip List Memory Complexity

- What is the expected height of a tower?
 - 1 if random flip sequence is T, 2 if it is H, T, 3 if it is H, H, T.
 - The chance of a tower having height i is $\frac{1}{2^i}$.
 - The expected height of a tower will be $X = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \ldots$
Skip List Memory Complexity

What is the expected height of a tower?

1 if random flip sequence is T, 2 if it is H, T, 3 if it is H, H, T.

The chance of a tower having height i is $\frac{1}{2^i}$.

The expected height of a tower will be $X = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \ldots$

We have $X = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \frac{6}{64} + \ldots$, i.e.,

$X/2 = \frac{1}{4} + \frac{1}{8} + \frac{3}{16} + \frac{4}{32} + \frac{5}{64} + \ldots$;

So, $X - X/2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \ldots = 1$,

i.e., $X = 2$.

So, the expected height of a tower is 2, i.e., the expected size of the skip list is $2n \in \Theta(n)$.

Theorem

A skip list that includes n keys is expected to have $\Theta(n)$ nodes.
Skip List Height

- How many levels are expected to be in a linked list of size n?
 - The chance of a key appearing in less than h levels is $\left(1 - \frac{1}{2^h}\right)$.
 - The chance of all keys appearing in less than h levels is $\left(1 - \frac{1}{2^h}\right)^n$.
 - Assume $h = 3 \log n$; the chance of list having at most h levels is
 $\left(1 - \frac{1}{2^{3 \log n}}\right)^n = \left(1 - \frac{1}{n^3}\right)^n > 1 - 1/n^2$.

Theorem

The height of a skip list on n items is expected to be $\Theta(\log n)$.

This can be used to show the number of levels in a skip list is $\Theta(\log n)$.

COMP 3170 - Analysis of Algorithms & Data Structures
Skip List Height

- How many levels are expected to be in a linked list of size \(n \)?
 - The chance of a key appearing in less than \(h \) levels is \((1 - \frac{1}{2^h}) \).
 - The chance of all keys appearing in less than \(h \) levels is \((1 - \frac{1}{2^h})^n \).
 - Assume \(h = 3 \log n \); the chance of list having at most \(h \) levels is \((1 - \frac{1}{2^{3\log n}})^n = (1 - \frac{1}{n^3})^n > 1 - 1/n^2 \).

- With a chance of \(1 - 1/n^2 \), the height of the tree is at most \(2 \log n \).
- This can be used to show the number of levels in a skip list is \(\Theta(\log n) \)

Theorem

The height of a skip list on \(n \) items is expected to be \(\Theta(\log n) \).
Search Time in Skip Lists

How many nodes are visited for searching a key k?

Think of backward moves from the lowest level that includes k. If it is possible to go up (the key appears in the next level), we go up (with a chance of $\frac{1}{2}$). If not, we stay in the same level and go left.

Let $C(j)$ be the number of nodes to be visited when there are j levels above us. After visiting a node at the current level (with cost 1) we have:

$$C(j) \leq 1 + \frac{1}{2} \cdot C(j-1) + \frac{1}{2} \cdot C(j)$$

which gives

$$C(j) \leq 2^j$$

From the previous slide, we know j is expected to be $\Theta(\log n)$.
Search Time in Skip Lists

- How many nodes are visited for searching a key \(k \)?
- Think of backward moves from the lowest level that includes \(k \)
 - If it is possible to go up (the key appears in the next level), we go up (with a chance of \(1/2 \)).
 - If not, we stay in the same level and go left.
Search Time in Skip Lists

- How many nodes are visited for searching a key k?
- Think of backward moves from the lowest level that includes k
 - If it is possible to go up (the key appears in the next level), we go up (with a chance of $1/2$).
 - If not, we stay in the same level and go left.
- Let $C(j)$ be the number of nodes to be visited when there are j levels above us.
- After a visiting a node at the current level (with cost 1) we have:
 \[C(j) \leq 1 + \frac{1}{2} \cdot C(j - 1) + \frac{1}{2} \cdot C(j) \]
 which gives $C(j) \leq 2j$
Search Time in Skip Lists

- How many nodes are visited for searching a key k?
- Think of backward moves from the lowest level that includes k
 - If it is possible to go up (the key appears in the next level), we go up (with a chance of $1/2$).
 - If not, we stay in the same level and go left.
- Let $C(j)$ be the number of nodes to be visited when there are j levels above us.
- After a visiting a node at the current level (with cost 1) we have:
 $$C(j) \leq 1 + \frac{1}{2} \cdot C(j - 1) + \frac{1}{2} \cdot C(j)$$
 which gives $C(j) \leq 2j$
- From the previous slide, we know j is expected to be $\Theta(\log n)$.

![Diagram of Skip Lists](image.png)
Search Time in Skip Lists

Theorem

The number of nodes visited when searching for an item in the skip list of \(n \) keys is expected to be \(\Theta(\log n) \).

- For insert, we do search and add an expected \(\Theta(1) \) number of nodes; search time dominates.
- Similarly, for delete, search time dominates.
Summary of Skip Lists

- Expected space usage: $O(n)$
- Expected height: $O(\log n)$
- Skip-Search: $O(\log n)$ expected time
- Skip-Insert: $O(\log n)$ expected time
- Skip-Delete: $O(\log n)$ expected time
- Skip lists are fast and simple to implement in practice