COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lectures 15 - Feb. 5, 2018
CLRS 6.1, 6.2, 6.3
University of Manitoba
A **priority queue** is an abstract data type formed by a set S of key-value pairs

Basic operations include:

- **insert** (k) inserts a new element with key k into S
- **get-Max** which returns the element of S with the largest key
- **extract-Max** which returns the element of S with the largest key and delete it from S

We are often given the whole data and need to **build** the data structure based on it.

- Any data structure for a priority queue should be **constructed** efficiently.
What is a good implementation (data structure) for priority queues?

- Binary heaps: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.

- Balanced binary search tree: get-Max runs in $O(1)$ and extract-Max and insert both can run in $\Theta(\log n)$.

- The problem with BSTs: it is costly to build them. How long does it take to form a BST from a given set of items? It takes $\Omega(n \log n)$; otherwise you can sort them in $o(n \log n)$ by building the BST and doing an inoder traverse in $O(n)$.

- We know we cannot comparison-sort in $o(n \log n)$ and hence cannot build the tree in such time.
Priority queue implementation

- What is a good implementation (data structure) for priority queues?
- You have seen **binary heaps** before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.
What is a good implementation (data structure) for priority queues?

You have seen **binary heaps** before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.

Is a balanced binary search tree a good implementation of a priority queue?
Priority queue implementation

- What is a good implementation (data structure) for priority queues?
- You have seen **binary heaps** before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.
- Is a balanced binary search tree a good implementation of a priority queue?
 - with a little augmentation, get-Max runs in $O(1)$ and extract-Max and insert both can run in $\Theta(\log n)$.

The problem with BSTs: it is costly to build them

How long does it take to form a BST from a given set of items?

It takes $\Omega(n \log n)$; otherwise you can sort them in $o(n \log n)$ by building the BST and doing an inorder traverse in $O(n)$.

We know we cannot comparison-sort in $o(n \log n)$ and hence cannot build the tree in such time.
What is a good implementation (data structure) for priority queues?

You have seen binary heaps before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.

Is a balanced binary search tree a good implementation of a priority queue?

- with a little augmentation, get-Max runs in $O(1)$ and extract-Max and insert both can run in $\Theta(\log n)$.

The problem with BSTs: it is costly to build them

- How long does it take to form a BST from a given set of items?
- It takes $\Omega(n \log n)$; otherwise you can sort them in $o(n \log n)$ by building the BST and doing an inorder traverse in $O(n)$.
- We know we cannot comparison-sort in $o(n \log n)$ and hence cannot build the tree in such time.
Binary heaps

- A **heap** is a **tree** data structure.
- For every node i other than the root, we have $key[parent[i]] \geq key[i]$.
- A **binary** heap is a complete binary tree which can be stored using an array.
 - `build-heap` takes $\Theta(n)$ time
 - `insert`, `extract-Max` take $\Theta(\log n)$
 - `get-Max` takes $O(1)$
Binary heaps

- Suppose multiple priority queues on different servers.
- Occasionally a server must be rebooted, requiring two priority queues to be **merged**.
- With a typical binary heap, merging requires concatenating arrays and **re-running** build-heap; this takes $\Theta(n)$:’-(

```
50 28 19 10 13
50 28 19 10 13
35 30 27
35 27 30
```

```
50 35 30 28 27 13 19 5 10
50 35 30 28 27 13 19 5 10
```
Binary heaps

- Suppose multiple priority queues on different servers.
- Occasionally a server must be rebooted, requiring two priority queues to be **merged**.
- With a typical binary heap, merging requires concatenating arrays and **re-running** build-heap; this takes $\Theta(n)$:’-(
- When implementing an abstract data type always consider if you need it to be **mergable** or not.
We would like to build a data structure for priority queues that:

- supports insert, extract-Max, get-Max, and build efficiently (as in binary heaps)
- merging two priority queues takes $o(n)$
We would like to build a data structure for priority queues that:

- supports insert, extract-Max, get-Max, and build efficiently (as in binary heaps)
- merging two priority queues takes $o(n)$

Solution: **binomial heaps** which are mergable heaps that efficiently support:

- $\text{insert}(H, x)$
- $\text{extract-Max}(H)$
- $\text{get-Max}(H)$
- $\text{build}(A)$
- $\text{union}(H_1, H_2)$ (merge)
- $\text{increase-key}(H, x, k)$
- $\text{delete}(H, x)$
A **bionomial tree** is an ordered tree defined recursively

- children of each node have a specific ordering (similar to ‘left’ and ‘right’ child in binary trees).
A **bionomial tree** is an ordered tree defined recursively
- children of each node have a specific ordering (similar to ‘left’ and ‘right’ child in binary trees).

The base case for a bionomial tree B_0 is a single node

To build B_k, we take two copies of B_{k-1} and let the first child of the root of the second copy be the root of the first copy.
A bionomial tree is an ordered tree defined recursively:

- children of each node have a specific ordering (similar to ‘left’ and ‘right’ child in binary trees).

The base case for a bionomial tree B_0 is a single node.

To build B_k, we take two copies of B_{k-1} and let the first child of the root of the second copy be the root of the first copy.
Fun with Binomial Trees

Fun 1: The children of the root of the binomial tree B_k are the binomial trees B_{k-1}, \ldots, B_0.
Fun 1: The children of the root of the binomial tree B_k are the binomial trees B_{k-1}, \ldots, B_0.

- Induction: assume it is true for all binomial trees B_i with $i \leq k - 1$ (base easily holds).
- The tree B_k has its first child as B_{k-1} (recursive construction).
- With respect to other children, it is a binomial tree B_{k-1} and hence has children B_{k-2}, \ldots, B_0 by induction hypothesis.
Fun 2: B_k has 2^k nodes:
Fun with Binomial Trees

- Fun 2: B_k has 2^k nodes:
 - The recursion is $N(B_k) = 2N(B_{k-1}), N(B_0) = 1$
Fun 2: B_k has 2^k nodes:
- The recursion is $N(B_k) = 2N(B_{k-1})$, $N(B_0) = 1$

B_k has height k:
Fun with Bionomial Trees

- Fun 2: B_k has 2^k nodes:
 - The recursion is $N(B_k) = 2N(B_{k-1})$, $N(B_0) = 1$
- B_k has height k:
 - The recursion is $h(B_k) = h(B_{k-1}) + 1$:
Fun with Bionomial Trees

- Fun 2: B_k has 2^k nodes:
 - The recursion is $N(B_k) = 2N(B_{k-1}), N(B_0) = 1$

- B_k has height k:
 - The recursion is $h(B_k) = h(B_{k-1}) + 1$

- Within B_k there are $\binom{k}{i}$ nodes at depth i.
 - The recursion is $ch(k, i) = ch(k - 1, i - 1) + ch(k - 1, i)$
 - Solving this recursion gives $ch(k, i) = \binom{k}{i}$. To get an idea of the proof, note that $\binom{k}{i} = \binom{k-1}{i-1} + \binom{k-1}{i}$