COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 3 - Jan. 8, 2018

CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5

University of Manitoba

Picture is from the cover of the textbook CLRS.
Asymptotic Notations

Review

- To analyze running time of an algorithm (under RAM model) we sum the number of primitive operations and memory accesses of the algorithm.

- The cost (running time) of algorithm A for a problem of size n would be a function $T_A(n)$.

- How do we compare two different algorithms? say $T_A(n) = \frac{1}{1000} n^3$ and $T_B(n) = 1000n^2 + 500n + 200$.

- Summarize the time complexity using asymptotic notations!

- Idea: assume the size of input grows to infinity; identify which component of $T_A(n)$ contributes most to the grow of $T_A(n)$.

- As n grows:
 - constants don’t matter (e.g., $T_A(n)$)
 - low-order terms don’t matter (e.g., $T_B(n)$)
Asymptotic Notations

Big O Notations

- Informally, $f(n) = O(g(n))$ means f is asymptotically smaller than or equal to g.

Definition

$f(n) \in O(g(n)) \iff$

$\exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n)$

- Ignore low-order terms
- Ignore constants
Big O Notations

E.g., $f(n) = 2n$, $g(n) = n$. Is it that $f(n) \in O(g(n))$?
E.g., \(f(n) = 2n \), \(g(n) = n \). Is it that \(f(n) \in O(g(n)) \)?

- Yes, \(f(n) \) is asymptotically smaller than or equal (equal) to \(g(n) \).
- To prove, we should show
 \[
 \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n)
 \]
- It suffices to define \(n_0 = 1 \) and \(M = 3 \), we have \(\forall n > 1, 2n \leq 3n \).
- \(M \) could be any number larger than or equal to 2, and \(n_0 \) could be any number.
Asymptotic Notations

Big O Notations

- E.g., \(f(n) = 2n \), \(g(n) = n \). Is it that \(f(n) \in O(g(n)) \)?
 - Yes, \(f(n) \) is asymptotically smaller than or equal (equal) to \(g(n) \).
 - To prove, we should show
 \[\exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n) \]
 - It suffices to define \(n_0 = 1 \) and \(M = 3 \), we have \(\forall n > 1, 2n \leq 3n \).
 - \(M \) could be any number larger than or equal to 2, and \(n_0 \) could be any number.

- We require specific values of \(M \) (not all choices for \(M \) work)
Asymptotic Notations

Big O Notations

E.g., \(f(n) = 2n + 100/n, g(n) = n \). Is it that \(f(n) \in O(g(n)) \)?
Asymptotic Notations

Big O Notations

- E.g., \(f(n) = 2n + 100/n, \) \(g(n) = n. \) Is it that \(f(n) \in O(g(n))? \)
 - Yes, again, \(f(n) \) is asymptotically smaller than or equal (equal) to \(g(n). \)
 - To prove, we should show
 \[\exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n) \]
 - It suffices to define \(n_0 = 10 \) and \(M = 3, \) we have
 \[\forall n > 10, 2n + 100/n \leq 3n. \]
E.g., $f(n) = 2n + 100/n$, $g(n) = n$. Is it that $f(n) \in O(g(n))$?

Yes, again, $f(n)$ is asymptotically smaller than or equal (equal) to $g(n)$.

To prove, we should show

$\exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n)$

It suffices to define $n_0 = 10$ and $M = 3$, we have

$\forall n > 10, 2n + 100/n \leq 3n$.

We require specific values of M and n_0 (not all choices work)
Let $f(n) = 2018n^2 + 1396n$ and $g(n) = n^3$. Prove $f(n) \in O(g(n))$.
Let \(f(n) = 2018n^2 + 1396n \) and \(g(n) = n^3 \). Prove \(f(n) \in O(g(n)) \)

We should define \(M \) and \(n_0 \) s.t. \(\forall n > n_0 \) we have \(2018n^2 + 1396n \leq Mn^3 \). This is equivalent to \(2018n + 1396 \leq Mn^2 \).

We have \(2018n + 1396 \leq 2018n + 1396n = 3414n \). So, to prove \(2018n + 1396 \leq Mn^2 \), it suffices to prove \(3414n \leq Mn^2 \), i.e., \(3414 \leq Mn \). This is always true assuming \(M = 1 \) and \(n \geq 3414 \) \((n_0 = 3414) \).

Setting \(M = 3414 \) and \(n_0 = 1 \) also work!
Informally, $f(n) = o(g(n))$ means f is asymptotically smaller than g.

Definition

\[f(n) \in o(g(n)) \iff \forall M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) < M \cdot g(n) \]

ignore low-order terms
E.g., $f(n) = 2n$, $g(n) = n$. Is it that $f(n) \in o(g(n))$?
Asymptotic Notations

Little o Notations

- E.g., \(f(n) = 2n, \ g(n) = n \). Is it that \(f(n) \in o(g(n)) \)?
- No because for \(M = 1 \), it is not true that \(f(n) < Mg(n) \) (i.e., \(2n < n \)) for large values of \(n \).

![Graph showing \(f(n), g(n), 3g(n) \)]
Prove that $n^2 \sin(n) + 1984n + 2016 \in o(n^3)$.
Asymptotic Notations

Little o Notation

- Prove that \(n^2 \sin(n) + 1984n + 2016 \in o(n^3) \).
 - We have to prove that for all values of \(M \) there is an \(n_0 \) so that for \(n > n_0 \) we have \(n^2 \sin(n) + 1984n + 2016 < Mn^3 \).
 - We know \(n^2 \sin(n) \leq n^2 \), \(1984n \leq 1984n^2 \) and \(2016 \leq 2016n^2 \). So, \(n^2 \sin(n) + 1984n + 2016 \leq (1 + 1984 + 2016)n^2 = 4001n^2 \).
 - So, to prove \(n^2 \sin(n) + 1984n + 2016 < Mn^3 \) it suffices to prove \(4001n^2 < Mn^3 \), i.e., \(4001/M < n \), so, we can define \(n_0 \) to be any value larger than \(4001/M \).
Asymptotic Notations

Little o Notation

- Prove that \(n^2 \sin(n) + 1984n + 2016 \in o(n^3) \).
 - We have to prove that for all values of \(M \) there is an \(n_0 \) so that for \(n > n_0 \) we have \(n^2 \sin(n) + 1984n + 2016 < Mn^3 \).
 - We know \(n^2 \sin(n) \leq n^2 \), \(1984n \leq 1984n^2 \) and \(2016 \leq 2016n^2 \). So, \(n^2 \sin(n) + 1984n + 2016 \leq (1 + 1984 + 2016)n^2 = 4001n^2 \).
 - So, to prove \(n^2 \sin(n) + 1984n + 2016 < Mn^3 \) it suffices to prove \(4001n^2 < Mn^3 \), i.e., \(4001/M < n \), so, we can define \(n_0 \) to be any value larger than \(4001/M \).

- For little o, \(n_0 \) is often defined as a function of \(M \).
Asymptotic Notations

Big Ω Notation

- $f(n) = o(g(n))$ means f is asymptotically larger than or equal to g.

Definition

\[
f(n) \in \Omega(g(n)) \iff \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \geq M \cdot g(n)
\]

- Let $f(n) = n/2020$ and $g(n) = \log(n)$. Prove $f(n) \in \Omega(g(n))$.
 - We need to provide M and n_0 so that for all $n \geq n_0$ we have $n/2020 \geq M \log(n)$, i.e., $n \geq 2020M\log(n)$.
 - We know $\log(n) < n$ (assuming $n > 1$). So, in order to show $2020M\log(n) \leq n$, it suffices to have $2020M \leq 1$, i.e., M can be any value smaller than $1/2020$ (and n_0 can be 1 or any other positive integer).
Asymptotic Notations

Little \(\omega \) Notation

- \(f(n) = \omega(g(n)) \) means \(f \) is asymptotically larger than \(g \).

Definition

\[
f(n) \in \omega(g(n)) \iff \forall M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) > M \cdot g(n)
\]

- Let \(f(n) = n/2020 \) and \(g(n) = \log(n) \). Prove \(f(n) \in \omega(g(n)) \).
 - For any constant \(M \) we need to provide \(n_0 \) so that for all \(n \geq n_0 \) we have \(n/2020 > M \log(n) \), i.e., \(n > 2020M \log(n) \).
 - We know \(\log(n) < \sqrt{n} \) (assuming \(n > 4 \)). So, in order to show \(2020M \log(n) < n \), it suffices to have \(2020M \sqrt{n} < n \), i.e., \(2020M < \sqrt{n} \). For that, it suffices to have \((2020M)^2 < n \), i.e., \(n_0 \) can be defined as \(\max\{4, (2020M)^2\} \).
Asymptotic Notations

Little \(\omega \) Notation

- \(f(n) = \omega(g(n)) \) means \(f \) is **asymptotically larger than** \(g \).

Definition

\[
f(n) \in \omega(g(n)) \iff \forall M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) > M \cdot g(n)
\]

- Let \(f(n) = n/2020 \) and \(g(n) = \log(n) \). Prove \(f(n) \in \omega(g(n)) \).
 - For any constant \(M \) we need to provide \(n_0 \) so that for all \(n \geq n_0 \) we have \(n/2020 > M \log(n) \), i.e., \(n > 2020M \log(n) \).
 - We know \(\log(n) < \sqrt{n} \) (assuming \(n > 4 \)). So, in order to show \(2020M \log(n) < n \), it suffices to have \(2020M \sqrt{n} < n \), i.e., \(2020M < \sqrt{n} \). For that, it suffices to have \((2020M)^2 < n \), i.e., \(n_0 \) can be defined as \(\max\{4, (2020M)^2\} \).

- Similarly to little \(o \), for \(\omega \), we often need to define \(n_0 \) as a function of \(M \).
Θ Notation

- Informally $f(n) = Θ(g(n))$ means f is **asymptotically equal to** g.

Definition

$$f(n) ∈ Θ(g(n)) ⇔ \exists M_1, M_2 > 0, \exists n_0 > 0 \text{ s.t. } ∀ n > n_0, M_1 \cdot g(n) \leq f(n) \leq M_2 \cdot g(n)$$

Let $f(n) = n$ and $g(n) = n/2020$. Prove $f(n) ∈ Θ(g(n))$.

- We need to provide M_1, M_2, n_0 so that for all $n ≥ n_0$ we have $M_1 \cdot n/2020 \leq n \leq M_2 \cdot n/2020$.
- For the first inequality, we can have $M_1 = 1$ and for all n we have $n/2020 \leq n$.
- For the second inequality, we let M_2 to be any constant larger than 2020 which gives $M_2/2020 ≥ 1$.
- n_0 can be any value, e.g., $n_0 = 1$.
Asymptotic Notations

Common Growth Rates

- \(\Theta(1) \rightarrow \text{constant complexity} \)
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity

Binary search
$\Theta(n) \rightarrow$ linear complexity

Most practical algorithms :)

Optimal comparison-based sorting algorithms, e.g., merge-sort
$\Theta(n \log n) \rightarrow$ pseudo-linear complexity

Naive sorting algorithms (Bubble sort, insertion sort)
$\Theta(n^2) \rightarrow$ quadratic complexity

Naive matrix multiplication
$\Theta(2^n) \rightarrow$ exponential complexity

The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000.$
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search

$\Theta(n) \rightarrow$ linear complexity

Most practical algorithms :)
Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)

- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)
- $\Theta(2^n) \rightarrow$ exponential complexity
 - naive matrix multiplication

The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000$.
Asymptotic Notations

Common Growth Rates

- \(\Theta(1) \rightarrow \) constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
- \(\Theta(\log n) \rightarrow \) logarithmic complexity
 - Binary search
- \(\Theta(n) \rightarrow \) linear complexity
 - Most practical algorithms :)
- \(\Theta(n \log n) \rightarrow \) pseudo-linear complexity

Optimal comparison-based sorting algorithms, e.g., merge-sort
\(\Theta(n^2) \rightarrow \) quadratic complexity
naive sorting algorithms (Bubble sort, insertion sort)
\(\Theta(n^3) \rightarrow \) cubic complexity
naive matrix multiplication
\(\Theta(2^n) \rightarrow \) exponential complexity

The 'algorithm' terminates but the universe is likely to end much earlier even if \(n \approx 1000 \).
Asymptotic Notations

Common Growth Rates

- \(\Theta(1) \) → constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- \(\Theta(\log n) \) → logarithmic complexity
 - Binary search
- \(\Theta(n) \) → linear complexity
 - Most practical algorithms :)
- \(\Theta(n \log n) \) → pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity

The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000$.
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - Naive sorting algorithms (Bubble sort, insertion sort)
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)
- $\Theta(n^3) \rightarrow$ Cubic Complexity
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)
- $\Theta(n^3) \rightarrow$ Cubic Complexity
 - naive matrix multiplication
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs

- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search

- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)

- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort

- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)

- $\Theta(n^3) \rightarrow$ Cubic Complexity
 - naive matrix multiplication

- $\Theta(2^n) \rightarrow$ Exponential Complexity

The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000$.
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)
- $\Theta(n^3) \rightarrow$ Cubic Complexity
 - naive matrix multiplication
- $\Theta(2^n) \rightarrow$ Exponential Complexity
 - The ‘algorithm’ terminates but the universe is likely to end much earlier even if $n \approx 1000$.