COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 4 - Jan. 10, 2018
CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5
University of Manitoba

Picture is from the cover of the textbook CLRS.
Asymptotic Notations in a Nutshell

<table>
<thead>
<tr>
<th>Definition</th>
<th>(f(n) \in O(g(n)))</th>
<th>(f(n) \in o(g(n)))</th>
<th>(f(n) \in \Omega(g(n)))</th>
<th>(f(n) \in \omega(g(n)))</th>
<th>(f(n) \in \Theta(g(n)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n) \in O(g(n)) \iff \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n))</td>
<td>(f(n) \in o(g(n)) \iff \forall M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) < M \cdot g(n))</td>
<td>(f(n) \in \Omega(g(n)) \iff \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \geq M \cdot g(n))</td>
<td>(f(n) \in \omega(g(n)) \iff \forall M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) > M \cdot g(n))</td>
<td>(f(n) \in \Theta(g(n)) \iff \exists M_1, M_2 > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, M_1 \cdot g(n) \leq f(n) \leq M_2 \cdot g(n))</td>
<td></td>
</tr>
</tbody>
</table>
Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
Common Growth Rates

- $\Theta(1)$ \rightarrow constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
- $\Theta(\log n)$ \rightarrow logarithmic complexity
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)

$\Theta(n \log n) \rightarrow$ pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

$\Theta(n^2) \rightarrow$ quadratic complexity

Naive sorting algorithms (Bubble sort, insertion sort)

$\Theta(2^n) \rightarrow$ exponential complexity

The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000.$
Common Growth Rates

- $\Theta(1) \rightarrow \text{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n) \rightarrow \text{linear complexity}$
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}$
Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
Common Growth Rates

- $\Theta(1) \rightarrow \text{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n) \rightarrow \text{linear complexity}$
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}$
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow \text{Quadratic complexity}$
 - naive sorting algorithms (Bubble sort, insertion sort)
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithm that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - Naive sorting algorithms (Bubble sort, insertion sort)
- $\Theta(n^3) \rightarrow$ Cubic Complexity

The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000$.
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)
- $\Theta(n^3) \rightarrow$ Cubic Complexity
 - naive matrix multiplication
Asymptotic Notations

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)
- $\Theta(n^3) \rightarrow$ Cubic Complexity
 - naive matrix multiplication
- $\Theta(2^n) \rightarrow$ Exponential Complexity

The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000.$
Common Growth Rates

- \(\Theta(1) \rightarrow \text{constant complexity}
 - \text{e.g., an algorithms that only samples a constant number of inputs}
- \(\Theta(\log n) \rightarrow \text{logarithmic complexity}
 - \text{Binary search}
- \(\Theta(n) \rightarrow \text{linear complexity}
 - \text{Most practical algorithms :) }
- \(\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}
 - \text{Optimal comparison based sorting algorithms, e.g., merge-sort}
- \(\Theta(n^2) \rightarrow \text{Quadratic complexity}
 - \text{naive sorting algorithms (Bubble sort, insertion sort)}
- \(\Theta(n^3) \rightarrow \text{Cubic Complexity}
 - \text{naive matrix multiplication}
- \(\Theta(2^n) \rightarrow \text{Exponential Complexity}
 - \text{The ‘algorithm’ terminates but the universe is likely to end much earlier even if } n \approx 1000. \)
Techniques for Comparing Growth Rates

Assume the running time of two algorithms are given by functions $f(n)$ and $g(n)$ and let

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

Then

$$f(n) \in \begin{cases}
 o(g(n)) & \text{if } L = 0 \\
 \Theta(g(n)) & \text{if } 0 < L < \infty \\
 \omega(g(n)) & \text{if } L = \infty
\end{cases}$$
Assume the running time of two algorithms are given by functions $f(n)$ and $g(n)$ and let

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

Then

$$f(n) \in \begin{cases}
 o(g(n)) & \text{if } L = 0 \\
 \Theta(g(n)) & \text{if } 0 < L < \infty \\
 \omega(g(n)) & \text{if } L = \infty
\end{cases}$$

If the limit is not defined, we need another method.

Note that we cannot compare two algorithms using big O and Ω notations.

E.g., algorithm A can have complexity $O(n^2)$ and algorithm B has complexity $O(n^3)$. We cannot state that A is faster than B (why?)
Asymptotic Notations

Fun with Asymptotic Notations

- Compare the grow-rate of $\log n$ and n^r where r is a real number.
Fun with Asymptotic Notations

Prove that \(n(sin(n) + 2) \) is \(\Theta(n) \).
Prove that \(n\sin(n) + 2 \) is \(\Theta(n) \).

Use the definition since the limit does not exist

Define \(n_0, M_1, M_2 \) so that \(\forall n > n_0 \) we have

\[M_1 n \sin(n) + 2 \leq n \leq q M_2 n \sin(n) + 2. \]

\(M_1 = \frac{1}{3}, M_2 = 1, n_0 = 1 \) work!
The same relationship that holds for relative values of numbers hold for asymptotic.

E.g., if $f(n) \in O(g(n))$ [f(n) is asymptotically smaller than or equal to g(n)], then we have $g(n) \in \Omega(f(n))$ [g(n) is asymptotically larger than or equal to f(n)].
The same relationship that holds for relative values of numbers hold for asymptotic.

E.g., if \(f(n) \in O(g(n)) \) [\(f(n) \) is asymptotically smaller than or equal to \(g(n) \)], then we have \(g(n) \in \Omega(f(n)) \) [\(g(n) \) is asymptotically larger than or equal to \(f(n) \)].

In order to prove \(f(n) \in \Theta(g(n)) \), we often show that \(f(n) \in O(n) \) and \(f(n) \in \Omega(g(n)) \).
Fun with Asymptotic Notations

- The same relationship that holds for relative values of numbers hold for asymptotic.
 - E.g., if \(f(n) \in O(g(n)) \) [\(f(n) \) is asymptotically smaller than or equal to \(g(n) \)], then we have \(g(n) \in \Omega(f(n)) \) [\(g(n) \) is asymptotically larger than or equal to \(f(n) \)].

- In order to prove \(f(n) \in \Theta(g(n)) \), we often show that \(f(n) \in O(n) \) and \(f(n) \in \Omega(g(n)) \).

- Similarly, we have **transitivity** in asymptotic notations: if \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), we have \(f(n) \in O(h(n)) \).
Asymptotic Notations

Fun with Asymptotic Notations

- The same relationship that holds for relative values of numbers hold for asymptotic.
 - E.g., if \(f(n) \in O(g(n)) \) [\(f(n) \) is asymptotically smaller than or equal to \(g(n) \)], then we have \(g(n) \in \Omega(f(n)) \) [\(g(n) \) is asymptotically larger than or equal to \(f(n) \)].

- In order to prove \(f(n) \in \Theta(g(n)) \), we often show that \(f(n) \in O(n) \) and \(f(n) \in \Omega(g(n)) \).

- Similarly, we have **transitivity** in asymptotic notations: if \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), we have \(f(n) \in O(h(n)) \).

- **Max rule**: \(f(n) + g(n) \in \Theta(\max\{f(n), g(n)\}) \).
 - E.g., \(2n^3 + 8n^2 + 16n \log n \in \Theta(\max\{2n^3, 8n^2, 16n \log n\}) = \Theta(n^3) \).
What is the time complexity of arithmetic sequences?

\[\sum_{i=0}^{n-1} (a + di) \]
What is the time complexity of arithmetic sequences?

$$\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2)$$

What about geometric sequence?

Harmonic sequence:

$$H_n = \sum_{i=1}^{n} \frac{1}{i}$$
What is the time complexity of arithmetic sequences?

\[\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \]

What about geometric sequence?

\[\sum_{i=0}^{n-1} ar^i \]
Fun with Asymptotic Notations

What is the time complexity of arithmetic sequences?

\[\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \]

What about geometric sequence?

\[\sum_{i=0}^{n-1} ar^i = \begin{cases}
 \frac{a(1-r^n)}{1-r} \in \Theta(1) & \text{if } 0 < r < 1 \\
 na \in Th(n) & \text{if } r = 1 \\
 \frac{r^n-1}{r-1} \in \Theta(r^n) & \text{if } r > 1
\end{cases} \]

What about Harmonic sequence?

\[H_n = \sum_{i=1}^{n} \frac{1}{i} \]
What is the time complexity of arithmetic sequences?

\[\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \]

What about geometric sequence?

\[\sum_{i=0}^{n-1} ar^i = \begin{cases}
 \quad a \frac{1-r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1 \\
 \quad na \in Th(n) & \text{if } r = 1 \\
 \quad \frac{r^n-1}{r-1} \in \Theta(r^n) & \text{if } r > 1
\end{cases} \]

What about Harmonic sequence?

\[H_n = \sum_{i=1}^{n} \frac{1}{i} \approx \ln(n) + \gamma \in \Theta(\log n) \quad (\gamma \text{ is a constant} \approx 0.577) \]
Asymptotic Notations

Loop Analysis

- Identify **elementary operations** that require constant time.
- The complexity of a loop is expressed as the **sum** of the complexities of each iteration of the loop.
- Analyze independent loops separately, and then **add** the results (use “maximum rules” and simplify when possible).
- If loops are nested, start with the innermost loop and proceed outwards.
Asymptotic Notations

Example of Loop Analysis

Algo1 \((n)\)
1. \(A \leftarrow 0\)
2. for \(i \leftarrow 1\) to \(n\) do
3. for \(j \leftarrow i\) to \(n\) do
4. \(A \leftarrow A / (i - j)^2\)
5. \(A \leftarrow A^{100}\)
6. return \(sum\)
Algo2 \((A, n)\)

1. \(\text{max} \leftarrow 0\)
2. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do}\)
3. \(\text{for } j \leftarrow i \text{ to } n \text{ do}\)
4. \(X \leftarrow 0\)
5. \(\text{for } k \leftarrow i \text{ to } j \text{ do}\)
6. \(X \leftarrow A[k]\)
7. \(\text{if } X > \text{max} \text{ then}\)
8. \(\text{max} \leftarrow X\)
9. \(\text{return } \text{max}\)
Example of Loop Analysis

Algo3 \((n)\)
1. \(X \leftarrow 0\)
2. \(\textbf{for } i \leftarrow 1 \textbf{ to } n^2 \textbf{ do}\)
3. \(j \leftarrow i\)
4. \(\textbf{while } j \geq 1 \textbf{ do}\)
5. \(X \leftarrow X + i/j\)
6. \(j \leftarrow \lfloor j/2 \rfloor\)
7. \(\textbf{return } X\)
Asymptotic Notations

MergeSort

Sorting an array A of n numbers

- **Step 1:** We split A into two subarrays: A_L consists of the first $\lceil \frac{n}{2} \rceil$ elements in A and A_R consists of the last $\lfloor \frac{n}{2} \rfloor$ elements in A.
- **Step 2:** Recursively run MergeSort on A_L and A_R.
- **Step 3:** After A_L and A_R have been sorted, use a function Merge to merge them into a single sorted array. This can be done in time $\Theta(n)$.
Asymptotic Notations

MergeSort

\[\text{MergeSort}(A, n)\]
1. \hspace{1em} \textbf{if} \ n = 1 \ \textbf{then}
2. \hspace{2em} \textbf{S} \leftarrow A
3. \hspace{1em} \textbf{else}
4. \hspace{2em} n_L \leftarrow \left\lceil \frac{n}{2} \right\rceil
5. \hspace{2em} n_R \leftarrow \left\lfloor \frac{n}{2} \right\rfloor
6. \hspace{2em} A_L \leftarrow [A[1], \ldots, A[n_L]]
7. \hspace{2em} A_R \leftarrow [A[n_L + 1], \ldots, A[n]]
8. \hspace{2em} S_L \leftarrow \text{MergeSort}(A_L, n_L)
9. \hspace{2em} S_R \leftarrow \text{MergeSort}(A_R, n_R)
10. \hspace{2em} S \leftarrow \text{Merge}(S_L, n_L, S_R, n_R)
11. \hspace{2em} \textbf{return} \ S
Asymptotic Notations

Analysis of MergeSort

- The following is the corresponding **sloppy recurrence** (it has floors and ceilings removed):

\[
T(n) = \begin{cases}
2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\
\text{d} & \text{if } n = 1.
\end{cases}
\]

- The exact and sloppy recurrences are identical when \(n \) is a power of 2.

- The recurrence can easily be solved by various methods when \(n = 2^j \). The solution has growth rate \(T(n) \in \Theta(n \log n) \).

- It is possible to show that \(T(n) \in \Theta(n \log n) \) for all \(n \) by analyzing the exact recurrence.
Analysis of Recursions

Substitution method

Guess the growth function and prove it using induction.

- For merge-sort, prove $T(n) < Mn \log n$.
- This holds for $n = 2, n = 3$ (base of induction).
- Fix a value of n and assume the inequality holds for smaller values.

 we have $T(n) = 2T(n/2) + cn \leq 2M(n/2 \log n/2) + cn = Mn \log n - MN + cn \leq Mn \log n + cn$ (the inequality comes from induction hypothesis)
Asymptotic Notations

Analysis of Recursions

- **Substitution method**
 - **Guess** the growth function and prove it using induction.
 - For merge-sort, prove $T(n) < Mn \log n$.
 - This holds for $n = 2$, $n = 3$ (base of induction).
 - Fix a value of n and assume the inequality holds for smaller values.
 we have $T(n) = 2T(n/2) + cn \leq 2M(n/2 \log n/2) + cn = Mn \log n - MN + cn \leq Mn \log n + cn$ (the inequality comes from induction hypothesis)

- **Limited Master theorem**

 $$T(n) = \begin{cases}
 a \ T \left(\frac{n}{b} \right) + n^c & \text{if } n > 1 \\
 d & \text{if } n = 1.
 \end{cases}$$

 - if $\log_b a > c$, then $T(n) \in \Theta(n^{\log_b a})$
 - if $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$
 - if $\log_b a < c$ then $T(n) \in \Theta(n^c)$