COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 5 - Jan. 12, 2018

CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5

University of Manitoba

Picture is from the cover of the textbook CLRS.
Analysis of Recursions

- The following is the **sloppy recurrence** for time complexity of merge sort:

 \[T(n) = \begin{cases}
 2 T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\
 d & \text{if } n = 1.
\end{cases} \]

- We can find the solution using **alternation method**:

 \[
 T(n) = 2 T(n/2) + cn \\
 = 2(2 T(n/4) + cn/2) + cn = 4 T(n/4) + 2cn \\
 = 4(2 T(n/8) + cn/4) + 2cn = 8 T(n/8) + 3cn \\
 = \ldots \\
 = 2^k T(n/2^k) + kcn \\
 = 2^{\log n} T(1) + \log ncn = \Theta(n \log n)
\]
Substitution method

- **Guess** the growth function and prove an upper bound for it using induction.

 - For merge-sort, prove $T(n) < Mn \log n$ for some value of M (that we choose).
 - This holds for $n = 2$ since we have $T(2) = 2d + 2c$, which is less than $2M$ as long as $M \geq c + d$ (base of induction).
 - Fix a value of n and assume the inequality holds for smaller values. We have $T(n) = 2T(n/2) + cn \leq 2M(n/2)(\log n/2) + cn = Mn \log n - Mn + cn \leq Mn \log n$ as long as M is selected to be no less than c (the inequality comes from the induction hypothesis).

- This shows $T(n) \in O(n \log n)$
Master theorem

\[
T(n) = \begin{cases}
 a \ T \left(\frac{n}{b}\right) + f(n) & \text{if } n > 1 \\
 d & \text{if } n = 1.
\end{cases}
\]

(a \geq 1, \ b > 1, \ and \ f(n) > 0)

- Compare \(f(n)\) and \(n^{\log_b a}\)
- Case 1: if \(f(n) \in O\left(n^{\log_b a - \epsilon}\right)\), then \(T(n) \in \Theta\left(n^{\log_b a}\right)\)
- Case 2: if \(f(n) \in \Theta\left(n^{\log_b a (\log n)^k}\right)\) then \(T(n) \in \Theta\left(n^{\log_b a (\log n)^{k+1}}\right)\)
- Case 3: if \(f(n) \in \Omega\left(n^{\log_b a + \epsilon}\right)\) and if \(af(n/b) \leq cf(n)\) for some constant \(c < 1\) (regularity condition), then \(T(n) \in \Theta(f(n))\)
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
Master theorem examples

- \(T(n) = 2T(n/2) + \log n \)
 case 1: \(T(n) \in \Theta(n) \)
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- $T(n) = 4T(n/4) + 100n$? case 2: $T(n) \in \Theta(n \log n)$
Master theorem examples

- \(T(n) = 2T(n/2) + \log n \) case 1: \(T(n) \in \Theta(n) \)
- \(T(n) = 4T(n/4) + 100n \) case 2: \(T(n) \in \Theta(n \log n) \)
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- $T(n) = 4T(n/4) + 100n$? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2$?
Master theorem examples

- \(T(n) = 2T(n/2) + \log n \) case 1: \(T(n) \in \Theta(n) \)
- \(T(n) = 4T(n/4) + 100n \) case 2: \(T(n) \in \Theta(n \log n) \)
- \(T(n) = 3T(n/2) + n^2 \)
 - Case 3, check whether regularity condition holds, i.e., whether \(af(n/b) \leq cf(n) \). Since we have \(3(n/2)^2 = 3/4n^2 \) the regularity condition holds, i.e., \(f(n) \in \Theta(n^2) \)
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- $T(n) = 4T(n/4) + 100n$? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2$?
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds, i.e., $f(n) \in \Theta(n^2)$
- $T(n) = T(n/2) + n(2 - \cos(n))$?
 - Case 3, check whether regularity condition holds.
 - For $n = 2k\pi$, we have $\cos(n/2) = -1$ and $\cos(n) = 1$; we have $af(n/b) = n/2(2 - \cos(n/2)) = 3n/2$, which is not within a factor $c < 1$ of $f(n) = n(2 - 1) = n$ [i.e., we cannot say $3n/2 \leq cn$ for any $c < 1$]. So we cannot get any conclusion from Master theorem.
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- $T(n) = 4T(n/4) + 100n$? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2$?
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds, i.e., $f(n) \in \Theta(n^2)$
- $T(n) = T(n/2) + n(2 - \cos(n))$?
 - Case 3, check whether regularity condition holds.
 - For $n = 2k\pi$, we have $\cos(n/2) = -1$ and $\cos(n) = 1$; we have $af(n/b) = n/2(2 - \cos(n/2)) = 3n/2$, which is not within a factor $c < 1$ of $f(n) = n(2 - 1) = n$ [i.e., we cannot say $3n/2 \leq cn$ for any $c < 1$]. So we cannot get any conclusion from Master theorem.
- $T(n) = 2T(n/2) + n(\log n)^3$? Case 2, we have $f(n) = \Theta(n^{\log_b a}(\log n)^k)$ for $k = 3$. We have $T(n) = \Theta(n(\log n)^4)$.

QuickSort

QuickSelect is based on a sorting method developed by Hoare in 1960:

```
quick-sort1(A)
A: array of size n
1. if n ≤ 1 then return
2. p ← choose-pivot1(A)
3. i ← partition(A, p)
4. quick-sort1(A[0, 1, . . . , i − 1])
5. quick-sort1(A[i + 1, . . . , size(A) − 1])
```

Here pivot is chosen arbitrarily (e.g., it is the first item in the array)
QuickSort

Analysis of Quick-sort

Worst case: \(T^{(\text{worst})}(n) = T^{(\text{worst})}(n - 1) + \Theta(n) \)

The algorithm has a running time of \(\Theta(n^2) \) in the worst case.
Analysis of Quick-sort

Worst case: $T^{(\text{worst})}(n) = T^{(\text{worst})}(n - 1) + \Theta(n)$
The algorithm has a running time of $\Theta(n^2)$ in the worst case.

Best case: $T^{(\text{best})}(n) = T^{(\text{best})}(\lfloor \frac{n-1}{2} \rfloor) + T^{(\text{best})}(\lceil \frac{n-1}{2} \rceil) + \Theta(n)$
Similar to Merge-sort; $T^{(\text{best})}(n) \in \Theta(n \log n)$
QuickSort

Analysis of Quick-sort

Worst case: \(T^{(\text{worst})}(n) = T^{(\text{worst})}(n - 1) + \Theta(n) \)
The algorithm has a running time of \(\Theta(n^2) \) in the worst case.

Best case: \(T^{(\text{best})}(n) = T^{(\text{best})}(\lfloor n - 1/2 \rfloor) + T^{(\text{best})}(\lceil n - 1/2 \rceil) + \Theta(n) \)
Similar to Merge-sort; \(T^{(\text{best})}(n) \in \Theta(n \log n) \)

Any other best case? \(T(n) = T(n/100) + T(99n/100) + cn \)
which belongs to \(\Theta(n \log n) \)
QuickSort

Average-case analysis of quick-sort

In a comparison-based sorting the running time is proportional to the total number of comparisons performed during partitioning.

Let X_n be a random variable denoting the number of comparisons made by quicksort on an array of size n.

$$E[X_n] = \text{expected no. of comparisons} = \sum_{i,j \in 0, \ldots, n-1} \text{prob}(\text{the } i\text{'th and } j\text{'th elements are compared})$$

Elements i and j are compared iff one of them is selected as a pivot at some point before any other element in $\{i+1, i+2, \ldots, j-1\}$.

This occurs with probability $\frac{2}{j-i+1}$.

In sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, what is the chance that 3 and 7 are compared? The chance that 4, 5, 6 are not selected as pivot before 3, 7 is $\frac{2}{5}$.

The expected time complexity will be $\sum_{i,j \in 0, \ldots, n-1, j > i} \frac{2}{j-i+1}$.
Average-case analysis of quick-sort

- In a **comparison-based sorting** the running time is proportional to the total number of comparisons performed during partitioning.

- Let X_n be a random variable denoting the number of comparisons made by quicksort on an array of size n.

$E[X_n] = \text{expected no. of comparisons} = \sum_{i,j \in \{0, \ldots, n-1\}} \text{prob(\text{the i’th and j’th elements are compared})}$
Average-case analysis of quick-sort

- In a comparison-based sorting the running time is proportional to the total number of comparisons performed during partitioning.

- Let X_n be a random variable denoting the number of comparisons made by quicksort on an array of size n.

$$E[X_n] = \text{expected no. of comparisons} = \sum_{i,j \in \{0,\ldots,n-1\}} \text{prob}(\text{the i’th and j’th elements are compared})$$

- Elements i and j are compared iff one of them is selected as a pivot at some point before any other element in $\{i + 1, i + 2, \ldots, j - 1\}$. This occurs with probability $\frac{2}{j-i+1}$.

 - In sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, what is the chance that 3 and 7 are compared? → the chance that 4, 5, 6 are Not selected as pivot before 3, 7 → 2/5
QuickSort

Average-case analysis of quick-sort

- In a **comparison-based sorting** the running time is proportional to the total number of comparisons performed during partitioning.

- Let X_n be a random variable denoting the number of comparisons made by quicksort on an array of size n.

\[
E[X_n] = \text{expected no. of comparisons} = \sum_{i,j \in 0,...,n-1} \text{prob}(\text{the } i\text{'th and } j\text{'th elements are compared})
\]

- Elements i and j are compared iff one of them is selected as a pivot at some point before any other element in \{i + 1, i + 2, \ldots, j − 1\}. This occurs with probability $\frac{2}{j−i+1}$.

 - In sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, what is the chance that 3 and 7 are compared? \(\rightarrow\) the chance that 4, 5, 6 are Not selected as pivot before 3, 7 \(\rightarrow\) 2/5

- The expected time complexity will be

\[
\sum_{i,j \in 0,...,n-1,j>i} \frac{2}{j−i+1}
\]
QuickSort

Average-case analysis of quick-sort

For the expected time complexity of Quicksort, we have:

\[
E[X_n] = \sum_{i,j\in\{0,\ldots,n-1\}, j>i} \frac{2}{j-i+1}
\]

\[
= \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \frac{2}{j-i+1}
\]

\[
= \sum_{i=0}^{n-2} \sum_{k=2}^{n-i} \frac{2}{k} < \sum_{i=0}^{n-2} \sum_{k=2}^{n} \frac{2}{k}
\]

\[
= \sum_{i=0}^{n-2} \Theta(\log n) = \Theta(n^2)
\]

Note that we used the fact that the sum of Harmonic series belongs to \(\Theta(\log n)\).