QuickSelect Review

quick-select1(A, i)
A: array of size n, i: integer s.t. 0 ≤ i < n
1. p ← choose-pivot1(A)
2. j ← partition(A, p)
3. if j = i then
 4. return A[j]
5. else if j > i then
6. return quick-select1(A[0, 1, . . . , j − 1], i)
7. else if j < i then
8. return quick-select1(A[j + 1, j + 2, . . . , n − 1], i − j − 1)

- If pivot is at position j, the cost of recursive call parameters will be:
 - None if j = i.
 - (j, i) if j > i (recursing on the left subarray).
 - (n − j − 1, i − j − 1) if j < i (recursing on the right subarray).
Average-case analysis of quick-select

Assume all $n!$ permutations are equally likely.

Define $T(n, i)$ as average cost for selecting ith item from size-n array:

The cost for recursive calls (RC) is

$$RC = \begin{cases}
0 & j = i \\
T(j, i), & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}$$
Average-case analysis of quick-select

Assume all $n!$ permutations are equally likely.

Define $T(n, i)$ as average cost for selecting ith item from size-n array:

The cost for recursive calls (RC) is

$$RC = \begin{cases}
0 & j = i \\
T(j, i), & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}$$

Shuffled input → it is equally likely for the pivot to be at any position:

$$T(n, i) = \underbrace{cn}_{\text{partition}} + \frac{1}{n} \left((\text{RC if } j=0) + (\text{RC if } j=1) + \ldots + (\text{RC if } j=n-1) \right)$$

$$= \underbrace{cn}_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1, i - j - 1) + \sum_{j=i+1}^{n-1} T(j, i) \right)$$

For simplicity, define $T(n) = \max_{0 \leq k \leq n} T(n, k)$.
Average-case analysis of quick-select

\[
T(n) \leq \underbrace{cn}_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right)
\]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.
- The recursive cost for a good pivot is at most \(T(3n/4) \).
- The recursive cost for a bad pivot is at most \(T(n) \).

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T([3n/4]) \right), & n \geq 2 \\
 d & n = 1
\end{cases}
\]
Average-case analysis of quick-select

The average cost is then given by:

\[T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d, & n = 1
\end{cases} \]
The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T\left(\lfloor 3n/4 \rfloor \right) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]

Rearranging gives:

\[
T(n) \leq 2cn + T\left(\lfloor 3n/4 \rfloor \right) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d \\
\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)
\]

Since \(T(n) \) must be \(\Omega(n) \) (why?), \(T(n) \in \Theta(n) \).
Linear-time selection

- Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.

- Is there any selection algorithm that runs in $O(n)$ in the worst-case?

- The answer is Yes; Median of medians algorithms!
- It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
 - x will be the pivot for quick-select
- Partition the whole array using x as the pivot
- Recurs on the corresponding subarray as in Quick-select
Median of five example

```
| ....... | 2     | 54    | 44 | 4   | 25 | .......... |
| ....... | 5     | 5     | 32 | 18  | 39 | .......... |
| ....... | 9     | 87    | 21 | 26  | 47 | .......... |
| ....... | 19    | 9     | 13 | 16  | 56 | .......... |
| ....... | 24    | 10    | 2  | 19  | 71 | .......... |
```
Median of five example

\[\begin{array}{cccccc}
2 & 5 & 2 & 4 & 25 \\
5 & 9 & 13 & 16 & 39 \\
9 & 10 & 21 & 18 & 47 \\
19 & 54 & 32 & 19 & 56 \\
24 & 87 & 44 & 26 & 71 \\
\end{array}\]

Median of each group
Median of five example

\[
\begin{array}{cccc}
2 & 5 & 2 & 4 \\
5 & 9 & 13 & 16 \\
9 & 10 & 21 & 18 \\
19 & 54 & 32 & 19 \\
24 & 87 & 44 & 26 \\
\end{array}
\]

Find X, the median of medians
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $\leq x$.
 - This implies half of blocks include at least 3 elements $\leq x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x.

- Similarly, there will be at least $3n/10$ elements larger than x.

- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $\leq x$.
 - This implies half of blocks include at least 3 elements $\leq x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x.

- Similarly, there will be at least $3n/10$ elements larger than x.

- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot

- In the worst case, the size of recursive call is always $7n/10$.

$$T(n) \leq \begin{cases}
 \begin{aligned}
 & T(n/5) \\
 & \text{find } x \\
 & d, \\
 \end{aligned} +
 \begin{aligned}
 & \text{partition around } x \\
 & cn \\
 \end{aligned} +
 \begin{aligned}
 & \text{recursive call} \\
 & T(7n/10), \\
 \end{aligned} & n \geq 2 \\
 \begin{aligned}
 & n = 1 \\
 \end{aligned}
\end{cases}$$
Median of five algorithm

\[T(n) \leq \begin{cases}
\frac{T(n)}{5} + \frac{cn}{2} + \frac{T(7n/10)}{2}, & n \geq 2 \\
\text{find } x \quad \text{partition around } x \\
d, & n = 1
\end{cases} \]

- We **guess** that \(T(n) \in O(n) \) and use induction to prove it.
- We prove there is a value \(M \) s.t. \(T(n) \leq Mn \) for all \(n \geq 1 \).
- For the base we have \(T(1) = d \leq M \) as long as \(M \geq d \).
- For any value of \(n \) we can state:

\[
T(n) \leq T(n/5) + T(7n/10) + cn \quad (\text{definition}) \\
\leq M \cdot n/5 + M \cdot 7n/10 + cn \quad (\text{induction hypothesis}) \\
= (9M/10 + c)n \\
\leq M \cdot n \quad \text{as long as } M \geq 9M/10 + c, \ i.e., \ M \geq 10c
\]

so, we showed for \(M = \max\{10c, d\} \) we have \(T(n) \leq M \cdot n \) for \(n \geq 1 \). So, \(T(n) \in O(n) \).
Quick-sort revisit

Theorem

It is possible to select the \(i \)'th smallest item in a list of \(n \) numbers in time \(\Theta(n) \)

- Quick-sort in \(O(n \log n) \) time:
 - Using select algorithm to choose the pivot as the median of \(n \) items in \(O(n) \) time
 - Partition around pivot in \(O(n) \) time (selecting pivot as \(n/c' \)th smallest item for constant \(c \) gives the same result)
 - Sort the two sides of pivot recursively in time \(2T(n/2) \).

 The cost will be \(T(n) = 2T(n/2) + \Theta(n) \), which gives \(T(n) = \Theta(n \log n) \) [case II of Master theorem]

Theorem

A smart selection of pivot, using linear-time select, results in quick-sort running in \(\Theta(n \log n) \)