COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 9 - Jan. 22, 2018

CLRS 12.2, 12.3, 13.2, read problem 13-3

University of Manitoba
Binary Search Trees (review)

Structure A BST is either empty or contains a KVP, left child BST, and right child BST.

Ordering Every key k in $T.left$ is less than the root key.
Every key k in $T.right$ is greater than the root key.
BSTs

BST Search and Insert

search(\(k\))
Compare \(k\) to current node, stop if found, else recurse on subtree unless it’s empty

Example: **search**(24)
BSTs

BST Search and Insert

search\((k)\) Compare k to current node, stop if found, else recurse on subtree unless it’s empty

Example: search(24)
BSTs

BST Search and Insert

\[\text{search}(k) \] Compare \(k \) to current node, stop if found, else recurse on subtree unless it’s empty

Example: \(\text{search}(24) \)
BSTs

BST Search and Insert

\(\text{search}(k) \) Compare \(k \) to current node, stop if found, else recurse on subtree unless it’s empty

Example: \(\text{search}(24) \)
BST Search and Insert

search(k) Compare k to current node, stop if found, else recurse on subtree unless it’s empty

insert(k, v) Search for k, then insert (k, v) as new node

Example: *insert*(24, . . .)
BSTs

BST Delete

- If node is a leaf, just delete it.
BSTs

BST Delete

- If node is a leaf, just delete it.
BSTs

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
BSTs

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with **successor** or **predecessor** node and then delete
 - predecessor is the rightmost node on the left subtree
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with **successor** or **predecessor** node and then delete
 - predecessor is the rightmost node on the left subtree
 - successor is the leftmost node on the right subtree
BSTs

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with **successor** or **predecessor** node and then delete
 - predecessor is the rightmost node on the left subtree
 - successor is the leftmost node on the right subtree
How to find max/min elements in a BST?

- BSTs maintain data in sorted order, which is useful for some queries (an advantage over hash tables which scatter data).
BSTs

Binary Search Trees

- How to find max/min elements in a BST?
 - Just find the rightmost/leftmost node in $\Theta(h)$ time

BSTs maintain data in sorted order, which is useful for some queries (an advantage over hash tables which scatter data).
BSTs

Binary Search Trees

- How to find max/min elements in a BST?
 - Just find the rightmost/leftmost node in $\Theta(h)$ time
- How can I print all keys in sorted order

- BSTs maintain data in sorted order, which is useful for some queries (an advantage over hash tables which scatter data).
Binary Search Trees

- How to find max/min elements in a BST?
 - Just find the rightmost/leftmost node in $\Theta(h)$ time
- How can I print all keys in sorted order?
 - Do an in-order traversal of the tree in $\Theta(n)$ time
 - Can we do that in $o(n)$?

- **BSTs maintain data in sorted order, which is useful for some queries (an advantage over hash tables which scatter data).**
BSTs

Binary Search Trees

- How to find max/min elements in a BST?
 - Just find the rightmost/leftmost node in $\Theta(h)$ time
- How can I print all keys in sorted order?
 - Do an in-order traversal of the tree in $\Theta(n)$ time
 - Can we do that in $o(n)$? no! we need to report an output of size n

- BSTs maintain data in sorted order, which is useful for some queries (an advantage over hash tables which scatter data).
BSTs

Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h =$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?

- Worst-case:
search, insert, delete all have cost $\Theta(h)$, where
$h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $\Theta(n)$
- Best-case:
BSTs

Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h =$ height of the tree $= \text{max. path length from root to leaf}$

If n items are *inserted* one-at-a-time, how big is h?

- Worst-case: $\Theta(n)$
- Best-case: $\Theta(\log n)$
- Average-case:
BSTs

Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h =$ height of the tree $=$ max. path length from root to leaf.

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $\Theta(n)$
- Best-case: $\Theta(\log n)$
- Average-case: $\Theta(\log n)$
 (similar analysis to *quick-sort1*)
BSTs

Balanced BSTs

- Perfectly balanced BSTs: all nodes except for the bottom 2 levels are full.
 - Too strict for efficient BST balancing.
Balanced BSTs

- Perfectly balanced BSTs: all nodes except for the bottom 2 levels are full.
 - Too strict for efficient BST balancing.

- Weight balanced: at each internal node i, at least cn_i nodes are in its left subtree and cn_i in its right subtree, for some constant $c \in (0, 1/2]$, where n_i denotes the number of descendants for node i.
Balanced BSTs

- Perfectly balanced BSTs: all nodes except for the bottom 2 levels are full.
 - Too strict for efficient BST balancing.

- Weight balanced: at each internal node i, at least cn_i nodes are in its left subtree and cn_i in its right subtree, for some constant $c \in (0, 1/2]$, where n_i denotes the number of descendants for node i.

- Height balanced: heights of left and right subtrees of each internal node differ by at most k, for some constant $k \geq 1$.
 - For AVL trees, $k = 1$.
 - We will assume $k = 1$ for the remainder of our discussion.
Balanced BSTs

- Perfectly balanced BSTs: all nodes except for the bottom 2 levels are full.
 - Too strict for efficient BST balancing.
- Weight balanced: at each internal node i, at least cn_i nodes are in its left subtree and cn_i in its right subtree, for some constant $c \in (0, 1/2]$, where n_i denotes the number of descendants for node i.
- Height balanced: heights of left and right subtrees of each internal node differ by at most k, for some constant $k \geq 1$.
 - For AVL trees, $k = 1$.
 - We will assume $k = 1$ for the remainder of our discussion.
- Height $\Theta(\log n)$ where n is the number of nodes in the tree.
BSTs

Balanced BSTs

- Perfectly balanced BSTs: all nodes except for the bottom 2 levels are full.
 - Too strict for efficient BST balancing.

- Weight balanced: at each internal node i, at least cn_i nodes are in its left subtree and cn_i in its right subtree, for some constant $c \in (0, 1/2]$, where n_i denotes the number of descendants for node i.

- Height balanced: heights of left and right subtrees of each internal node differ by at most k, for some constant $k \geq 1$.
 - For AVL trees, $k = 1$.
 - We will assume $k = 1$ for the remainder of our discussion.

- Height $\Theta(\log n)$ where n is the number of nodes in the tree.

All balanced BSTs (with respect to any of above definitions) have height $\Theta(\log n)$
 - We see the proof for height-balanced BSTs in a minute.
BSTs

Tree height

Definition

The **height** of a node \(a \) is the length of the longest path between \(a \) and any descendant of \(a \)

- as opposed to **depth** which is the length of the path between \(a \) and the root.
- Height can be defined recursively as follows:

\[
height(a) = \begin{cases}
-1, & a = \Phi \\
1 + \max\{height(a.\text{left}), height(a.\text{right})\}, & a \neq \Phi
\end{cases}
\]
BSTs

Tree height

Definition

The **height** of a node a is the length of the longest path between a and any descendent of a

- as opposed to **depth** which is the length of the path between a and the root.
- Height can be defined recursively as follows:

$$
height(a) = \begin{cases}
-1, & a = \Phi \\
1 + \max\{height(a.left), height(a.right)\}, & a \neq \Phi
\end{cases}
$$

- For a height-balanced BST with $k = 1$, the balancing factor for any node is in $\{-1, 0, 1\}$.
Bounds for the height of height-balanced BSTs

Theorem

For the height \(h(n) \) of a height-balanced BST (with \(k = 1 \)) on sufficiently large \(n \) nodes we have

\[
\log(n) - 1 < h(n) < 1.45 \log(n + 1)
\]

This implies \(h(n) \in \Theta(\log n) \).

Let's see the proof.
We want to prove $\log(n) - 1 < h(n)$.

The number of nodes in a binary search tree of height h is at most:

$$n \leq 2^{h+1} - 1 \Rightarrow \log n \leq \log(2^{h+1} - 1) < \log(2^{h+1}) = h + 1$$

Hence, we have $\log n - 1 < h$.
BSTs

Upper Bound for the height of height-balanced BSTs

We want to show $h(n) < 1.45 \log (n + 1)$.

- Let $s(n)$ denote the minimum number of nodes in a height-balanced BST (with $k = 1$)
- We have $s(0) =$
Upper Bound for the height of height-balanced BSTs

- We want to show $h(n) < 1.45 \log(n + 1)$.
 - Let $s(n)$ denote the minimum number of nodes in a height-balanced BST (with $k = 1$).
 - We have $s(0) = 1$ $s(1) =$
BSTs

Upper Bound for the height of height-balanced BSTs

- We want to show $h(n) < 1.45 \log(n + 1)$.
 - Let $s(n)$ denote the minimum number of nodes in a height-balanced BST (with $k = 1$)
 - We have $s(0) = 1 \quad s(1) = 2$
We want to show $h(n) < 1.45 \log(n + 1)$. Let $s(n)$ denote the minimum number of nodes in a height-balanced BST (with $k = 1$). We have $s(0) = 1$ $s(1) = 2$ $s(2) =$
BSTs

Upper Bound for the height of height-balanced BSTs

- We want to show $h(n) < 1.45 \log(n + 1)$.
 - Let $s(n)$ denote the minimum number of nodes in a height-balanced BST (with $k = 1$)
 - We have $s(0) = 1$ $s(1) = 2$ $s(2) = 4$

\[
s(h) = \begin{cases}
1 & h = 0 \\
2 & h = 1 \\
\quad s(h - 1) + s(h - 2) + 1, & h \geq 2
\end{cases}
\]
We want to show $h(n) < 1.45 \log(n + 1)$.

- Let $s(n)$ denote the minimum number of nodes in a height-balanced BST (with $k = 1$)
- We have $s(0) = 1$, $s(1) = 2$, $s(2) = 4$

$$s(h) = \begin{cases}
1 & h = 0 \\
2 & h = 1 \\
s(h - 1) + s(h - 2) + 1, & h \geq 2
\end{cases}$$

- We can say $s(h) > F(h)$ where $F(h)$ is the h'th Fibonacci number.
- For large n, we have $F(h) \approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{h+1} - 1$
BSTs

Upper Bound for the height of height-balanced BSTs

- We want to show \(h(n) < 1.45 \log(n + 1) \).
 - Let \(s(n) \) denote the minimum number of nodes in a height-balanced BST (with \(k = 1 \))
 - We have \(s(0) = 1 \), \(s(1) = 2 \), \(s(2) = 4 \)

\[
 s(h) = \begin{cases}
 1 & h = 0 \\
 2 & h = 1 \\
 s(h - 1) + s(h - 2) + 1 & h \geq 2
\end{cases}
\]

- We can say \(s(h) > F(h) \) where \(F(h) \) is the \(h \)'th Fibonacci number.
 - For large \(n \), we have \(F(h) \approx \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{h+1} - 1 \)

We have \(n > \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{h+1} - 1 \rightarrow \sqrt{5}(n + 1) \geq \left(\frac{1 + \sqrt{5}}{2} \right)^{h+1} \rightarrow \log(\sqrt{5}(n + 1)) \geq (h + 1) \log\left(\frac{1 + \sqrt{5}}{2} \right) \rightarrow h < \frac{\log \sqrt{5} + \log(n+1)}{\log(1 + \sqrt{5}) - 1} - 1 \)

\[
= \frac{1}{\log(1 + \sqrt{5}) - 1} \log(n + 1) + \frac{\log \sqrt{5}}{\log(1 + \sqrt{5}) - 1} - 1 < 1.45 \log(n + 1)
\]
BSTs

BST Single Rotation

- Height of a height-balanced BST on n nodes is $\Theta(\log n)$
- A self-balancing BST maintains the height-balanced property after an insertion/deletion via tree rotation

Every rotation swaps parent-child relationship between two nodes (here between 2 and 4)

Tree rotation preserves the BST key ordering property.

Each rotation requires updating a few pointers in $O(1)$ time.

original height: $\max(\text{height}(a) + 2; \text{height}(b) + 2; \text{height}(c) + 1)$
new height: $\max(\text{height}(a) + 1; \text{height}(b) + 2; \text{height}(c) + 2)$