COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lectures 15, 16 - Feb. 5, 7, 2018
CLRS 6.1, 6.2, 6.3
University of Manitoba
Priority queues

A **priority queue** is an abstract data type formed by a set S of key-value pairs.

Basic operations include:

- **insert** (k) inserts a new element with key k into S
- **get-Max** which returns the element of S with the largest key
- **extract-Max** which returns the element of S with the largest key and delete it from S

We are often given the whole data and need to **build** the data structure based on it.

- Any data structure for a priority queue should be **constructed** efficiently.
Priority queue implementation

What is a good implementation (data structure) for priority queues?
Priority queue implementation

- What is a good implementation (data structure) for priority queues?

- You have seen **binary heaps** before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.
Priority queue implementation

What is a good implementation (data structure) for priority queues?

You have seen **binary heaps** before: \(\text{get-Max} \) runs in \(O(1) \) and extract-Max and insert both take \(\Theta(\log n) \) for \(n \) keys.

Is a balanced binary search tree a good implementation of a priority queue?
Priority queue implementation

- What is a good implementation (data structure) for priority queues?
- You have seen **binary heaps** before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.
- Is a balanced binary search tree a good implementation of a priority queue?
 - with a little augmentation, get-Max runs in $O(1)$ and extract-Max and insert both can run in $\Theta(\log n)$.
What is a good implementation (data structure) for priority queues?

You have seen **binary heaps** before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.

Is a balanced binary search tree a good implementation of a priority queue?

- with a little augmentation, get-Max runs in $O(1)$ and extract-Max and insert both can run in $\Theta(\log n)$.

The problem with BSTs: it is costly to build them

- How long does it take to form a BST from a given set of items?
- It takes $\Omega(n \log n)$; otherwise you can sort them in $o(n \log n)$ by building the BST and doing an inorder traverse in $O(n)$.
- We know we cannot comparison-sort in $o(n \log n)$ and hence cannot build the tree in such time.
Binary heaps

- A **heap** is a **tree** data structure.
- For every node i other than the root, we have $key[parent[i]] \geq key[i]$.
- A **binary heap** is a complete binary tree which can be stored using an array.
 - build-heap takes $\Theta(n)$ time
 - insert, extract-Max take $\Theta(\log n)$
 - get-Max takes $O(1)$
Binary heaps

- Suppose multiple priority queues on different servers.
- Occasionally a server must be rebooted, requiring two priority queues to be merged.
- With a typical binary heap, merging requires concatenating arrays and re-running build-heap; this takes $\Theta(n)$:-(

![Binary heap example](image)
Binary heaps

- Suppose multiple priority queues on different servers.
- Occasionally a server must be rebooted, requiring two priority queues to be merged.
- With a typical binary heap, merging requires concatenating arrays and re-running build-heap; this takes $\Theta(n)$:’-(
- When implementing an abstract data type always consider if you need it to be mergable or not.
Rethinking about Data Structure

We would like to build a data structure for priority queues that:

- supports insert, extract-Max, get-Max, and build efficiently (as in binary heaps)
- merging two priority queues takes $o(n)$
Rethinking about Data Structure

We would like to build a data structure for priority queues that:

- supports insert, extract-Max, get-Max, and build efficiently (as in binary heaps)
- merging two priority queues takes $o(n)$

Solution: **binomial heaps** which are mergable heaps that efficiently support

- $\text{insert}(H, x)$
- $\text{extract-Max}(H)$
- $\text{get-Max}(H)$
- $\text{build}(A)$
- $\text{union}(H_1, H_2)$ (merge)
- $\text{increase-key}(H, x, k)$
- $\text{delete}(H, x)$
A **binomial tree** is an ordered tree defined recursively

- children of each node have a specific ordering (similar to ‘left’ and ‘right’ child in binary trees).
A binomial tree is an ordered tree defined recursively:

- children of each node have a specific ordering (similar to ‘left’ and ‘right’ child in binary trees).

The base case for a binomial tree B_0 is a single node.

To build B_k, we take two copies of B_{k-1} and let the first child of the root of the second copy be the root of the first copy.
A **binomial tree** is an ordered tree defined recursively

- children of each node have a specific ordering (similar to ‘left’ and ‘right’ child in binary trees).

The base case for a binomial tree B_0 is a single node

To build B_k, we take two copies of B_{k-1} and let the first child of the root of the second copy be the root of the first copy.
Fun with Binomial Trees

Fun 1: The children of the root of the binomial tree B_k are the binomial trees B_{k-1}, \ldots, B_0.

![Diagram of binomial trees](image)
Fun with Binomial Trees

Fun 1: The children of the root of the binomial tree B_k are the binomial trees $B_{k-1}, \ldots B_0$.

- Induction: assume it is true for all binomial trees B_i with $i \leq k - 1$ (base easily holds).
- The tree B_k has its first child as B_{k-1} (recursive construction).
- With respect to other children, it is a binomial tree B_{k-1} and hence has children B_{k-2}, \ldots, B_0 by induction hypothesis.
Fun with Bionomial Trees

Fun 2: \(B_k \) has \(2^k \) nodes:

- The recursion is \(N(B_k) = 2N(B_{k-1}) \), \(N(B_0) = 1 \).
- \(B_k \) has height \(k \): \(h(B_k) = h(B_{k-1}) + 1 \).
- Within \(B_k \) there are \(\binom{k}{i} \) nodes at depth \(i \).
- The recursion is \(c(h, i) = c(h-1, i-1) + c(h-1, i) \).
- Solving this recursion gives \(c(k, i) = \binom{k}{i} \). To get an idea of the proof, note that \(\binom{k}{i} = \binom{k-1}{i-1} + \binom{k-1}{i} \).
Fun with Bionomial Trees

- Fun 2: B_k has 2^k nodes:
 - The recursion is $N(B_k) = 2N(B_{k-1})$, $N(B_0) = 1$
Fun with Binomial Trees

Fun 2: B_k has 2^k nodes:
- The recursion is $N(B_k) = 2N(B_{k-1})$, $N(B_0) = 1$
- B_k has height k:

\[\binom{k}{i} \]
Fun with Binomial Trees

- Fun 2: B_k has 2^k nodes:
 - The recursion is $N(B_k) = 2N(B_{k-1})$, $N(B_0) = 1$
- B_k has height k:
 - The recursion is $h(B_k) = h(B_{k-1}) + 1$:

\[
\begin{align*}
B_0 & \quad B_k \\
B_{k-1} & \quad B_{k-1}
\end{align*}
\]
Fun with Binomial Trees

- **Fun 2**: B_k has 2^k nodes:
 - The recursion is $N(B_k) = 2N(B_{k-1}), N(B_0) = 1$

- **B_k has height k**:
 - The recursion is $h(B_k) = h(B_{k-1}) + 1$

- **Within B_k there are $\binom{k}{i}$ nodes at depth i**.
 - The recursion is $ch(k, i) = ch(k - 1, i - 1) + ch(k - 1, i)$
 - Solving this recursion gives $ch(k, i) = \binom{k}{i}$. To get an idea of the proof, note that $\binom{k}{i} = \binom{k-1}{i-1} + \binom{k-1}{i}$
Definition

A **binomial heap** is a set of binomial trees such that:

- each binomial tree is heap-ordered \((key[parent[i]] \geq key[i])\)
- for each \(k\) there is at most one binomial tree of order \(k\)
Binomial Heaps

Definition

A **binomial heap** is a set of binomial trees such that:

- each binomial tree is heap-ordered \((\text{key}[\text{parent}[i]] \geq \text{key}[i])\)
- for each \(k\) there is at most one binomial tree of order \(k\)
Binomial Heaps

Definition

A **binomial heap** is a set of binomial trees such that:

- each binomial tree is heap-ordered \((key[parent[i]] \geq key[i])\)
- for each \(k\) there is at most one binomial tree of order \(k\)
Binomial Heaps

Definition

A binomial heap is a set of binomial trees such that:

- each binomial tree is heap-ordered \((key[parent[i]] \geq key[i])\)
- for each \(k\) there is at most one binomial tree of order \(k\)
Binomial Heaps

Definition

A **binomial heap** is a set of binomial trees such that:

- each binomial tree is heap-ordered \((\text{key}[\text{parent}[i]] \geq \text{key}[i])\)
- for each \(k\) there is at most one binomial tree of order \(k\)
Definition

A **binomial heap** is a set of binomial trees such that:

- each binomial tree is heap-ordered \((\text{key}[\text{parent}[i]] \geq \text{key}[i])\)
- for each \(k\) there is at most one binomial tree of order \(k\)
Number of Trees in Binomial Heaps

How many trees are in a binomial heap of n nodes?

Let x be the number of trees. We express the number of nodes as a function of x. The number of nodes is minimized when there is one tree of order i for any $i \in [0, x-1]$ (note that no two trees of same order can exist).

Recall that a binomial tree of order i has 2^i nodes. We have $n \geq 1 + 2 + \ldots + 2^{x-1} = 2^x - 1$, i.e., $x \leq \log(n+1)$.

A binomial heap storing n keys has at most $\log(n+1)$ binomial trees.
Number of Trees in Binomial Heaps

- How many trees are in a binomial heap of n nodes?
 - Let x be the number of trees
 - We express the number of nodes as a function of x
 - The number of nodes is minimized when there is one tree of order i for any $i \in [0, x - 1]$ (note that no two trees of same order can exist).
 - Recall that a binomial tree of order i has 2^i nodes.
 - We have $n \geq 1 + 2 + \ldots + 2^{x-1} = 2^x - 1$, i.e., $x \leq \log(n + 1)$
 - A binomial heap storing n keys has at most $\log(n + 1)$ binomial trees.
For `get-Max()` operation, just follow the links connecting roots of binomial trees.

- The maximum element in all the heap is the max node, hence root, in one of the trees.
- E.g., max in the below heap is $\max\{11, 99, 40\} = 90$.
Finding Max in Binomial Heaps

- For get-Max() operation, just follow the links connecting roots of binomial trees
 - The maximum element in all the heap is the max node, hence root, in one of the trees
 - E.g., max in the below heap is max\{11, 99, 40\} = 90

- There are log\((n + 1)\) trees and hence the time complexity is \(\Theta(\log n)\).
 - It is a bit worse that \(O(1)\) of get-Max() in binary heaps
Union operation: we want to merge two heaps of sizes n_1 and n_2.

- Similar to merge operation in merge sort, follow the links connecting roots of the heaps, and ‘merge’ them into one list (i.e., one heap).
- If two trees of same order i are visited, merge them into a binomial tree of order $i + 1$
 - It is possible by the definition of binomial tree.
 - The tree with the smaller key in its root becomes a child of the other tree.
- Two trees can be merged in $O(1)$.
- When 3 trees of order i, merge the 2 older trees (keep the new one).
Merging of Two Binomial Heaps

There is an analogy with binary addition: add bits and carry

- Read from the least significant to the most significant bit (right to left)
- \(111 + 011 = 1010\); “1010” means 1 tree of order 3, 0 tree of order 2, 1 tree of order 1, and 0 tree of order 0.
What is time complexity of merge?

- Each merge operation takes $O(1)$.
- For each tree rank, there will be at most one merge.
- The total time complexity is $O(\log(n_1) + \log(n_2)) = O(2\log(\max\{n_1, n_2\})) = O(\log n)$ where n is the size after the merge.

It is possible to merge two binomial heaps in $O(\log n)$ where n is the number of keys after the merge.
What is time complexity of merge?

- Each merge operation takes $O(1)$.
- For each tree rank, there will be at most one merge.
- The total time complexity is $O(\log(n_1) + \log(n_2)) = O(2\log(\max\{n_1, n_2\})) = O(\log n)$ where n is the size after the merge.

It is possible to merge two binomial heaps in $O(\log n)$ where n is the number of keys after the merge.
Insert Operation

To insert a new key x to the priority queue:

- Create a new binomial heap of size 1 (order 0) with the new key.
- Return the union of the old heap with the new one (e.g., Insert(40))
Insert Operation

- To insert a new key x to the priority queue:
 - Create a new binomial heap of size 1 (order 0) with the new key
 - Return the union of the old heap with the new one (e.g., Insert(40))
 - The time complexity is similar to merge.

- It is possible to insert a new item to a binomial heap in $O(\log n)$, which is as good as binary heaps.
Extract-Max Operation

To extract max, first search and find the maximum.

- Assuming max is in a binomial tree of order k, its children are k binomial trees of order $1, 2, \ldots, k-1$
- Delete max and create a new binomial heap formed by these trees.
- Merge the old heap and the new one.
- The time complexity is $O(\log n)$ for finding the max and $O(\log n)$ for merging the two heaps, i.e., $O(\log n)$ in total
Extract-Max Operation

To extract max, first search and find the maximum.
- Assuming max is in a binomial tree of order k, its children are k binomial trees of order 1, 2, ..., $k-1$
- Delete max and create a new binomial heap formed by these trees.
- Merge the old heap and the new one.
- The time complexity is $O(\log n)$ for finding the max and $O(\log n)$ for merging the two heaps, i.e., $O(\log n)$ in total.

It is possible to extract maximum element in a binomial heap in $O(\log n)$, which is as good as binary heaps.
Bionmial Heaps Review

- Get-Max can be done in $\Theta(\log n)$ (a bit slower than $\Theta(1)$ of binary heaps).
- Merge can be done in $\Theta(\log n)$ (much better than $\Theta(n)$ of binary heaps).
- Insert and Extract-Max can be done in $\Theta(\log n)$ (similar to binary heaps)
Increase Key

- Increase(a,x): assume you are given a pointer to a key a and want to increase it by x.
Increase Key

- Increase\((a, x)\): assume you are given a pointer to a key \(a\) and want to increase it by \(x\).
 - Note that if the pointer is not given, you need to search for the key, which takes \(\Theta(n)\) in any heap (heaps are NOT good for searching).
Increase Key

- Increase \((a,x)\): assume you are given a pointer to a key \(a\) and want to increase it by \(x\).
 - Note that if the pointer is not given, you need to search for the key, which takes \(\Theta(n)\) in any heap (heaps are NOT good for searching).
- Increase the key and ‘float’ it upward until \(key[parent[i]] \geq key[i]\) (e.g., increase '8' to '68').
Increase Key

- **Increase\((a, x)\):** assume you are given a pointer to a key \(a\) and want to increase it by \(x\).
 - Note that if the pointer is not given, you need to search for the key, which takes \(\Theta(n)\) in any heap (heaps are NOT good for searching).
- Increase the key and ‘float’ it upward until \(key[parent[i]] \geq key[i]\) (e.g., increase ‘8’ to ’68’).
Increase Key

- **Increase**(a, x): assume you are given a pointer to a key a and want to increase it by x.
 - Note that if the pointer is not given, you need to search for the key, which takes $\Theta(n)$ in any heap (heaps are NOT good for searching).

- Increase the key and ‘float’ it upward until $key[parent[i]] \geq key[i]$ (e.g., increase ’8’ to ’68’).
Increase Key

- **Increase(a, x):** assume you are given a pointer to a key a and want to increase it by x.
 - Note that if the pointer is not given, you need to search for the key, which takes $\Theta(n)$ in any heap (heaps are NOT good for searching)
- Increase the key and ‘float’ it upward until $key[parent[i]] \geq key[i]$ (e.g., increase ‘8’ to ’68’).
Increase Key

- **Increase**\((a, x)\): assume you are given a pointer to a key \(a\) and want to increase it by \(x\).
 - Note that if the pointer is not given, you need to search for the key, which takes \(\Theta(n)\) in any heap (heaps are NOT good for searching)

- Increase the key and ‘float’ it upward until \(\text{key}[\text{parent}[i]] \geq \text{key}[i]\) (e.g., increase ‘8’ to ‘68’).

- Time is proportional to the height of a binomial tree, i.e., the order of the tree
 - Recall that a binomial tree of order \(k\) has \(2^k\) nodes, so, the order and hence the height of any tree in the heap is \(O(\log n)\).

- **Increase the key of a given node can be done in time** \(\Theta(\log n)\).
Delete

- Delete(a): assume you are given a pointer to a key a and want to delete it
Delete

- Delete(a): assume you are given a pointer to a key a and want to delete it
 - Call Increase-key to set the key to ∞.
 - Call Extract-Max to remove the largest item; this would remove our node from the heap
- Time is $O(\log n)$ for Increase-key and $O(\log n)$ for Extract-Max.
Delete

Delete(a): assume you are given a pointer to a key a and want to delete it

- Call Increase-key to set the key to ∞.
- Call Extract-Max to remove the largest item; this would remove our node from the heap

Time is $O(\log n)$ for Increase-key and $O(\log n)$ for Extract-Max.
Delete

- **Delete(a):** assume you are given a pointer to a key a and want to delete it
 - Call *Increase-key* to set the key to ∞.
 - Call *Extract-Max* to remove the largest item; this would remove our node from the heap

- Time is $O(\log n)$ for *Increase-key* and $O(\log n)$ for *Extract-Max*.
Delete

- **Delete**(a): assume you are given a pointer to a key a and want to delete it
 - Call Increase-key to set the key to ∞.
 - Call Extract-Max to remove the largest item; this would remove our node from the heap
- Time is $O(\log n)$ for Increase-key and $O(\log n)$ for Extract-Max.
Delete

Delete(a): assume you are given a pointer to a key \(a\) and want to delete it

- Call Increase-key to set the key to \(\infty\).
- Call Extract-Max to remove the largest item; this would remove our node from the heap

- Time is \(O(\log n)\) for Increase-key and \(O(\log n)\) for Extract-Max.

Deleting a given node can be done in time \(O(\log n)\).