Disjoint Sets and Union-Find Structures

Shahin Kamali

CLRS 21.121.4

University of Manitoba
Disjoint Sets

- Disjoint set is an abstract data type for maintaining a collection \(S = \{S_1, S_2, \ldots, S_k\} \) of disjoint, non-empty sets.
 - Disjoint: there is no common element between any two sets (if \(a \) is in \(S_i \) it cannot be in \(S_j \) where \(i \neq j \)).
 - Dynamic: sets can be modified by \texttt{make-set} and \texttt{union} operations.
 - Each set is identified by a \texttt{representative element} of the set.

\[
k = 4; \quad S_a = \{a, b, m, n\}, \ S_c = \{c, g, h\}, \ S_e = \{d, e, f\}, \ S_q = \{q\}\]
Disjoint Sets Operations

- **makeSet**(x):
 - Create a new set \{x\} whose only element is x.
 - By property 1 above, x cannot be an element of any other set.
 - By default, x is the representative of the new set.

\[k = 4; \quad S_a = \{a, b, m, n\}, \quad S_c = \{c, g, h\}, \quad S_e = \{d, e, f\}, \quad S_q = \{q\} \]
Disjoint Sets Operations

- **makeSet(x):**
 - Create a new set \(\{x\} \) whose only element is \(x \).
 - By property 1 above, \(x \) cannot be an element of any other set.
 - By default, \(x \) is the representative of the new set.

E.g., **makeSet(\{p\})**

\[
k = 4; \quad S_a = \{a, b, m, n\}, \; S_c = \{c, g, h\}, \; S_e = \{d, e, f\}, \; S_q = \{q\}
\]

\[
S_p = \{p\}
\]
Disjoint Sets Operations

- **find(x)** (also called Find-Set(x)):
 - Return the representative element of the set containing x.

$$k = 4; \quad S_a = \{a, b, m, n\}, \quad S_c = \{c, g, h\}, \quad S_e = \{d, e, f\}, \quad S_q = \{q\},$$
Disjoint Sets Operations

- **find(x)** (also called Find-Set(x)):
 - Return the representative element of the set containing \(x \).

E.g., \(\text{find}(b) \rightarrow a \)

\[
k = 4; \quad S_a = \{a, b, m, n\}, \quad S_c = \{c, g, h\}, \quad S_e = \{d, e, f\}, \quad S_q = \{q\},
\]
Disjoint Sets Operations

- **find(x)** (also called Find-Set(x)):
 - Return the representative element of the set containing x.

E.g., \(\text{find}(b) \rightarrow a \)
E.g., \(\text{find}(c) \rightarrow c \)

\(k = 4; \quad S_a = \{a, b, m, n\}, \quad S_c = \{c, g, h\}, \quad S_e = \{d, e, f\}, \quad S_q = \{q\}, \)
Disjoint Sets Operations

- **union**(x, y):
 - Unite the sets containing x and y.
 - Suppose set S_x contains x and set S_y contains y.
 - $S \leftarrow S \cup \{S_x \cup S_y\} - S_x - S_y$
 - Assign a representative for $x \cup y$.
 - $\text{union}(x, y)$ is equivalent to $\text{union}(\text{find}(x), \text{find}(y))$.

$$k = 4; \quad S_a = \{a, b, m, n\}, \; S_c = \{c, g, h\}, \; S_e = \{d, e, f\}, \; S_q = \{q\},$$
Disjoint Sets Operations

- **union(x, y):**
 - Unite the sets containing x and y.
 - Suppose set S_x contains x and set S_y contains y.
 - $S \leftarrow S \cup \{S_x \cup S_y\} - S_x - S_y$
 - Assign a representative for $x \cup y$.
 - $\text{union}(x, y)$ is equivalent to $\text{union} (\text{find}(x), \text{find}(y))$.

E.g., Union(b, d) → merge S_a and S_e.

$k = 4; \quad S_a = \{a, b, m, n\}, S_c = \{c, g, h\}, S_e = \{d, e, f\}, S_q = \{q\}$,

$\rightarrow S_c = \{c, g, h\}, S_q = \{q\}, S_a = \{a, b, m, n, d, e, f\}$
Disjoint Sets Operations

- **makeSet(x):**
 - Create a new set \(\{x\} \) whose only element is \(x \).
 - By default, \(x \) is the representative of the new set.

- **find(x) (also called Find-Set(x)):**
 - Return the representative element of the set containing \(x \).

- **union(x, y):**
 - Unite the sets containing \(x \) and \(y \).
 - Assign a representative for \(x \cup y \).
 - \(union(x, y) \) is equivalent to \(union(find(x), find(y)) \).
Applications of Disjoint Sets

- Many applications in designing algorithms
- E.g., Kruskal’s minimum spanning tree
Kruskam’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
Kruskam’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
Kruskam’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
 - Maintain MST’s connected component as disjoint sets of vertices
 - e does not form a cycle iff its endpoints are in different components
Disjoint Sets Review

- **Disjoint set** is an abstract data type for maintaining a set of disjoint sets
 - `make-set(x)`: create a new set with a single item `x` (which is not in any of the existing sets).
 - `find(x)`: returns the representative item of the set that includes `x`.
 - `union(x,y)`: removes the sets in which `x` and `y` belong to and adds a new set which is the union of deleted sets
Disjoint Sets Review

- **Disjoint set** is an abstract data type for maintaining a set of disjoint sets
 - make-set(x): create a new set with a single item x (which is not in any of the existing sets).
 - find(x): returns the representative item of the set that includes x.
 - union(x,y): removes the sets in which x and y belong to and adds a new set which is the union of deleted sets

- Disjoint sets have many applications in design of algorithms (e.g., Kruskal’s MST algorithm)
Data Structures for Disjoint Sets

- Linked lists for disjoint sets:
 - Each set is stored as a linked-list.
 - In a ‘set object’, store head/tail pointers to the first/last elements.
 - Each node stores a set pointer to the set object.
 - The representative element is the first element in the list.
Linked lists for disjoint sets

- **makeSet(x):**
 - Create a list containing one node.
 - takes $O(1)$
 - $O(1)$ time
Linked lists for disjoint sets

- makeSet(x):
 - Create a list containing one node.
 - Takes $O(1)$
 - $O(1)$ time

makeSet(q)

\[S_1 = \{ x, p \} \]

\[S_2 = \{ a, h, c \} \]

\[S_1 = \{ q \} \]
Linked lists for disjoint sets

find(x):

follow the set-pointer to find the set object and get the representative element.
Linked lists for disjoint sets

- **find(x):**
 - follow the set-pointer to find the set object and get the representative element.

$\text{find}(h) \rightarrow a$

$S_1 = \{x, p\}$

$S_2 = \{a, h, c\}$
Linked lists for disjoint sets

- **find(x):**
 - follow the set-pointer to find the set object and get the representative element.
 - We assume we’re given a reference to x.
 - It takes $O(1)$ time

$\text{find}(h) \rightarrow a$

![Diagram showing two disjoint sets $S_1 = \{x, p\}$ and $S_2 = \{a, h, c\}$ with representative elements and set objects connected by pointers.](image-url)
Linked lists for disjoint sets

- **union(x, y):**
 - Append y’s list to the end of x’s list.
 - find(x) becomes the representative of the new set.
 - Use head pointer from x’s list and tail pointer from y’s list.
 - Requires updating the set pointer for each node in y’s list, i.e., $\Theta(n)$ time per operation in the worst case (when y has size $\Theta(n)$).
Linked lists for disjoint sets

- **union(x,y):**
 - Append y’s list to the end of x’s list.
 - find(x) becomes the representative of the new set.
 - Use head pointer from x’s list and tail pointer from y’s list.
 - Requires updating the **set pointer** for each node in y’s list, i.e., \(\Theta(n) \) time per operation in the worst case (when y has size \(\Theta(n) \)).

union(p,h)

\[S_1 = \{x, p\} \]

\[S_2 = \{a, h, c\} \]

\[S_3 = \{x, p, a, h, c\} \]
Linked lists for disjoint sets

\textbf{union}(x,y):

- Append \(y \)'s list to the end of \(x \)'s list.
- \textbf{find}(x) becomes the representative of the new set.
- Use head pointer from \(x \)'s list and tail pointer from \(y \)'s list.
- Requires updating the \textbf{set pointer} for each node in \(y \)'s list, i.e., \(\Theta(n) \) time per operation in the worst case (when \(y \) has size \(\Theta(n) \)).
- What is the \textbf{amortized cost} of performing \(n - 1 \) union operations?

\textbf{union}(p,h)
Amortized analysis considers the average cost per operation for a sequence of \(m \) operations.

In our previous examples, there is only one possible sequence of \(m \) operations.

- E.g., \(m \) increments and \(m \) insertions to a dynamic array
Review of Amortized Analysis

- Amortized analysis considers the average cost per operation for a sequence of \(m \) operations.
- In our previous examples, there is only one possible sequence of \(m \) operations
 - E.g., \(m \) increments and \(m \) insertions to a dynamic array
- In many data structures, there are many different sequences of operations
 - We often consider the **worst-case amortized time**, i.e., the average cost of an operation for the worst-case sequence
 - Sometimes people look at expected amortized time which considers the average cost for a random sequence (we do not talk about it in this course)
Linked lists for disjoint sets

What is the amortized cost of performing \(n - 1 \) union operations?

The following example is a worst-case sequence which provides a lower bound.

- \(\text{makeSet}(x_i) \) for \(i \in \{1, 2 \ldots, n\} \)
- \(\text{union}(x_i, x_1) \) for \(i \in \{2, \ldots n\} \), that is:
 - \(\text{union}(x_2, x_1) \): update 1 set-pointers
 - \(\text{union}(x_3, x_1) \): update 2 set-pointers
 - \ldots
 - \(\text{union}(x_i, x_1) \): at this point \(x_1 \) has \(i \) items \rightarrow update \(i \) set-pointers
 - \ldots
 - \(\text{union}(x_n, x_i) \): updated \(n - 1 \) set-pointers

Total set-pointer updates: \(1 + 2 + 3 \ldots + n - 1 \in \Omega(n^2) \).

Amortized number of updates is \(\Omega(n) \).

This is a worst-case amortized time, e.g., for a sequence of \(m \) operations formed by \(m \) make-sets, the amortized cost is constant.

If we simply append the second list to the end of the first list, the (worst-case) amortized time for union is \(\Theta(n) \).
Linked lists for disjoint sets

- What is the amortized cost of performing $n - 1$ union operations?
- The following example is a worst-case sequence which provides a lower bound.
 - `makeSet(x_i)` for $i \in \{1, 2 \ldots, n\}
 - `union(x_i, x_1)` for $i \in \{2, \ldots n\}$, that is:
 - `union(x_2, x_1)`: update 1 set-pointers
 - `union(x_3, x_1)`: update 2 set-pointers
 - \ldots
 - `union(x_i, x_1)`: at this point x_1 has i items \rightarrow update i set-pointers
 - \ldots
 - `union(x_n, x_i)`: updated $n - 1$ set-pointers
 - Total set-pointer updates: $1 + 2 + 3 + \ldots + n - 1 \in \Omega(n^2)$.
 - Amortized number of updates is $\Omega(n)$.
Linked lists for disjoint sets

What is the amortized cost of performing \(n - 1 \) union operations?

The following example is a worst-case sequence which provides a lower bound.

- \(\text{makeSet}(x_i) \) for \(i \in \{1, 2 \ldots, n\} \)
- \(\text{union}(x_i, x_1) \) for \(i \in \{2, \ldots, n\} \), that is:
 - \(\text{union}(x_2, x_1) \): update 1 set-pointers
 - \(\text{union}(x_3, x_1) \): update 2 set-pointers
 - \ldots
 - \(\text{union}(x_i, x_1) \): at this point \(x_1 \) has \(i \) items → update \(i \) set-pointers
 - \ldots
 - \(\text{union}(x_n, x_i) \): updated \(n - 1 \) set-pointers

Total set-pointer updates: \(1 + 2 + 3 + \ldots + n - 1 \in \Omega(n^2) \).

- Amortized number of updates is \(\Omega(n) \).
- This is a worst-case amortized time, e.g., for a sequence of \(m \) operations formed by \(m \) make-sets, the amortized cost is constant.
Linked lists for disjoint sets

What is the amortized cost of performing $n - 1$ union operations?

The following example is a worst-case sequence which provides a lower bound.

- makeSet(x_i) for $i \in \{1, 2 \ldots, n\}$
- union(x_i, x_1) for $i \in \{2, \ldots, n\}$, that is:
 - union(x_2, x_1): update 1 set-pointers
 - union(x_3, x_1): update 2 set-pointers
 - \ldots
 - union(x_i, x_1): at this point x_1 has i items \rightarrow update i set-pointers
 - \ldots
 - union(x_n, x_1): updated $n - 1$ set-pointers

Total set-pointer updates: $1 + 2 + 3 + \ldots + n - 1 \in \Omega(n^2)$.

- Amortized number of updates is $\Omega(n)$.
- This is a worst-case amortized time, e.g., for a sequence of m operations formed by m make-sets, the amortized cost is constant.

If we simply append the second list to the end of the first list, the (worst-case) amortized time for union is $\Theta(n)$.

Linked lists & Union by Weight

- What if we append the smallest list to the end of the larger list?
- In the set object, in addition to head and tail pointers, maintain a **weight** field which indicates the number of items in that list (set).
 - Make-set and find are as before, i.e., they take constant time per operation
 - For union, we compare the weights and append the smaller list to the end of the larger list

\[S_1 = \{ x, p \} \]
\[S_2 = \{ a, h, c \} \]
\[S_3 = \{ x, p, a, h, c \} \]
Consider a single node u of the list. We count the number of times the set-pointer is updated for that node.

Each time the pointer of u is updated, that means that the set of u is merged with a larger set.

- The weight of the set of u is at least doubled after the merge.

If there are n items in all sets, the weight of each set is at most n.

- Each update for set-pointer of u doubles the weight of its list, and this weight cannot be more than n.

- Hence, there are at most $\lceil \log n \rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates.
Linked lists & Union by Weight

- There are at most $\lceil \log n \rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates.

- Ignoring the cost of set-pointer updates, the cost of union for other pointer updates and also find and make-set are constants $\rightarrow \Theta(m)$ cost for m operation.
Linked lists & Union by Weight

- There are at most $\lceil \log n \rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates.
- Ignoring the cost of set-pointer updates, the cost of union for other pointer updates and also find and make-set are constants $\rightarrow \Theta(m)$ cost for m operation
- Union by Weight has a cost of $O(n \log n + m)$ for a sequence of m operations on a universe of size n
 - The amortized cost per operation is $O(1 + n \log n/m) = O(\log n)$
 - Note that $m \geq n$ since we need m operations to make a universe of size n.
Linked lists & Union by Weight

- There are at most \(\lceil \log n \rceil\) set-pointer updates per item, i.e., a total of \(O(n \log n)\) set-pointer updates.

- Ignoring the cost of set-pointer updates, the cost of union for other pointer updates and also find and make-set are constants \(\to \Theta(m)\) cost for \(m\) operation

- Union by Weight has a cost of \(O(n \log n + m)\) for a sequence of \(m\) operations on a universe of size \(n\)
 - The amortized cost per operation is \(O(1 + n \log n/m) = O(\log n)\)
 - Note that \(m \geq n\) since we need \(m\) operations to make a universe of size \(n\).

- Union by weight (appending smaller list to the end of larger one) improves the amortized time complexity from \(\Theta(n)\) to \(O(\log n)\).
 - In your next assignment, you will see this bound is tight, i.e., the amortized cost is \(\Theta(\log n)\).
Review of Linked lists & Union by Weight

- Each set is represented by a linked list
 - Each node has a set-pointer to the set object, which makes find(x) run in constant time
- For union(x,y), we append one list to the end of another
 - This requires updating all set pointers of the appended list
- If we append the smaller list to the end of the larger list, each operation takes amortized time of $\Theta(\log n)$ in the worst case.

Theorem

Union-by-weight for linked list results in amortized cost of $\Theta(\log n)$ per operation for a disjoint set.
Disjoint Set Forests

- A data structure for disjoint sets which is based on trees instead of lists.
 - Each set is stored as a rooted tree
 - Each node points to its parent
 - The root points to itself
 - The representative element is the root

\[S_1 = \{x, p\} \quad S_2 = \{a, h, c, f\} \]
Disjoint Set Forests

- MakeSet(x) takes $O(1)$ time:
 - Create a new tree containing one node x
 - $\text{parent}(x) \rightarrow x$

```
Find(x):
  y ← x
  while y ≠ parent(y)
    y ← parent(y)
  return y
```

Time proportional to the tree's height.
Disjoint Set Forests

- **MakeSet(x)** takes $O(1)$ time:
 - Create a new tree containing one node x
 - $\text{parent}(x) \rightarrow x$

- **Find(x):**
 - Follow parent pointers to the root and return it.
 - $y \leftarrow x$
 - while $y \neq \text{parent}(y)$
 - $y \leftarrow \text{parent}(y)$
 - return y
 - time proportional to the tree’s height

![Diagram](image_url)
Disjoint Set Forests

Union(x,y) (first approach):
- Set root of y’s tree to point to the root of x’s tree.
 - root_x ← find(x)
 - root_y ← find(y)
 - parent(root_y) ← root_x.
- Time is proportional to tree’s height
Disjoint Set Forests

- **Union(x,y)** (first approach):
 - Set root of y’s tree to point to the root of x’s tree.
 - $\text{root}_x \leftarrow \text{find}(x)$
 - $\text{root}_y \leftarrow \text{find}(y)$
 - $\text{parent}(\text{root}_y) \leftarrow \text{root}_x$.
 - Time is proportional to tree’s height

- Tree’s height can be $\Theta(n)$ for a universe of size n
 - In the worst case, each operation takes $\Theta(n)$.

\[
S_1 = \{x, p\} \quad S_2 = \{a, h, c, f\} \quad \{x, p, a, h, c, f\}
\]
Amortized cost of first approach

- What is the amortized cost when performing \(m \) operations?
What is the amortized cost when performing \(m \) operations?

- If we simply make the second tree point to the first one, it can be \(\Theta(n) \) in the worst case:
- Consider the following worst-case sequence of operations:
 - \text{make-set}(x_i) \text{ for } i \in \{1, \ldots, n\}
 - \text{union}(x_i, x_1) \text{ for } i \in \{2, \ldots, n\}.
What is the amortized cost when performing \(m \) operations?

If we simply make the second tree point to the first one, it can \(\Theta(n) \) in the worst case:

- consider the following worst-case sequence of operations:
 - \(\text{make-set}(x_i) \) for \(i \in \{1, \ldots, n\} \)
 - \(\text{union}(x_i, x_1) \) for \(i \in \{2, \ldots, n\} \).

- after the \(i \)'th union, set of \(x_1 \) is a tree of height \(i \).

- the total time for the \(2n - 1 \) operations is \(\sum_{i=1}^{n-1} i = n(n - 1)/2 \), i.e.,
 - the amortized cost is \(\Theta(n) \).
What is the amortized cost when performing \(m \) operations?

- If we simply make the second tree point to the first one, \(\Theta(n) \) in the worst case:
- consider the following worst-case sequence of operations:
 - make-set(\(x_i \)) for \(i \in \{1, \ldots, n\} \)
 - union(\(x_i, x_1 \)) for \(i \in \{2, \ldots, n\} \).
- after the \(i \)'th union, set of \(x_1 \) is a tree of height \(i \).
- the total time for the \(2n - 1 \) operations is \(\sum_{i=1}^{n-1} i = n(n - 1)/2 \), i.e.,
 - the amortized cost is \(\Theta(n) \).
- after forming this bad tree, the worst-case sequence of operations continues with \(m - 2n + 1 \) find(\(x \)) operation where \(x \) is the only leaf of the tree.
Amortized cost of first approach

What is the amortized cost when performing m operations?

- If we simply make the second tree point to the first one, it can be $\Theta(n)$ in the worst case:
- consider the following worst-case sequence of operations:
 - $\text{make-set}(x_i)$ for $i \in \{1, \ldots, n\}$
 - $\text{union}(x_i, x_1)$ for $i \in \{2, \ldots, n\}$.
- after the i’th union, set of x_1 is a tree of height i.
- the total time for the $2n - 1$ operations is $\sum_{i=1}^{n-1} i = n(n - 1)/2$, i.e.,
 - the amortized cost is $\Theta(n)$.
- after forming this bad tree, the worst-case sequence of operations continues with $m - 2n + 1$ find(x) operation where x is the only leaf of the tree.

Observation

Having the second tree point to the first one for union results in the worst-case trees of height n and amortized time of $\Theta(n)$ for each operation.
Reducing the Height of Trees

- Two strategies for bounding tree heights:
 - union by rank
 - path compression
Union by Rank

- Always attach the shorter tree to the root of the taller one
 - Similar to union-by-weight on lists
- Maintain the rank as an upper bound for the height of each tree.
 - The rank increased when both trees have the same rank

\[
S_1 = \{x, p\} \quad S_2 = \{a, h, c, f\} \quad \{x, p, a, h, c, f\}
\]
Union by Rank

- Always attach the shorter tree to the root of the taller one
- Similar to union-by-weight on lists
- Maintain the **rank** as an upper bound for the height of each tree.
 - The rank increased when both trees have the same rank

```plaintext
root_x ← find(x); root_y ← find(y)
if rank(root_x) > rank(root_y)
    parent(root_y) ← root_x
else
    parent(root_x) ← root_y
if rank(root_x) = rank(root_y)
    rank(root_y) ← rank(root_y) + 1
```

- **Example:**
 - $S_1 = \{x, p\}$
 - $S_2 = \{a, h, c, f\}$
 - $\{x, p, a, h, c, f\}$
Union by Rank

- If \(\text{rank}(x) = h \), the tree rooted at \(x \) has at least \(2^h \) nodes.
Union by Rank

- If \(\text{rank}(x) = h \), the tree rooted at \(x \) has at least \(2^h \) nodes.
 - Use induction; for the base, we know when \(h = 0 \), the tree contains \(1 = 2^0 \) nodes.
Union by Rank

If $\text{rank}(x) = h$, the tree rooted at x has at least 2^h nodes.

- use induction; for the base, we know when $h = 0$, the tree contains $1 = 2^0$ nodes.
- choose any $h > 0$ and consider the union operation in which the rank is increased from $h - 1$ to h.
- at the time of union, both trees had rank $h - 1$.
- by induction hypothesis, they each included at least 2^{h-1} nodes.
- then the resulting tree has at least $2 \cdot 2^{h-1} = 2^h$ nodes.
If \(\text{rank}(x) = h \), the tree rooted at \(x \) has at least \(2^h \) nodes.

- use induction; for the base, we know when \(h = 0 \), the tree contains \(1 = 2^0 \) nodes.
- choose any \(h > 0 \) and consider the union operation in which the rank is increased from \(h - 1 \) to \(h \).
- at the time of union, both trees had rank \(h - 1 \)
- by induction hypothesis, they each included at least \(2^{h-1} \) nodes.
- then the resulting tree has at least \(2 \cdot 2^{h-1} = 2^h \) nodes.
- The number of nodes is at least \(2^h \) since after the union, the number of nodes can be increased further.
If $\text{rank}(x) = h$, the tree rooted at x has at least 2^h nodes.

- use induction; for the base, we know when $h = 0$, the tree contains $1 = 2^0$ nodes.
- choose any $h > 0$ and consider the union operation in which the rank is increased from $h - 1$ to h.
- at the time of union, both trees had rank $h - 1$
- by induction hypothesis, they each included at least 2^{h-1} nodes.
- then the resulting tree has at least $2 \cdot 2^{h-1} = 2^h$ nodes.
- The number of nodes is at least 2^h since after the union, the number of nodes can be increased further.

Since the number of nodes is at least 2^h, the height of the trees is $O(\log n)$

- Union, find operations when we use union by rank is $O(\log n)$.
Path Compression

- A simple, effective add on to union by rank
 - Find(x) involves finding a path from x to the root of its tree
 - For each node on the path, updated its pointer to point directly to the root:

```
    a
   / \  
  b   c
 / \  /  
1  2 3  4
```

For any y that used to lie on the path from x to the root, any subsequent call to find(y) takes O(1) time. The amortized time is significantly improved.
Path Compression

- A simple, effective add on to union by rank
 - Find(x) involves finding a path from x to the root of its tree
 - For each node on the path, updated its pointer to point directly to the root:

    ```
    if $x \neq \text{parent}(x)$
        \text{parent}(x) \leftarrow \text{find(parent}(x))
    \text{return parent}(x)
    ```

For any y that used to lie on the path from x to the root, any subsequent call to find(y) takes $O(1)$ time; the amortized time is significantly improved.
Path Compression

- A simple, effective add on to union by rank
- Find(x) involves finding a path from x to the root of its tree
- For each node on the path, updated its pointer to point directly to the root:

  ```
  if x ≠ parent(x)
  parent(x) ← find(parent(x))
  return parent(x)
  ```

- For each visited node, the additional work is updating one pointer.

Time complexity remains the same asymptotically, i.e., $O(\log n)$. For any y that used to lie on the path from x to the root, any subsequent call to find(y) takes $O(1)$ time, the amortized time is significantly improved.
Path Compression

• A simple, effective add on to union by rank
 • Find(x) involves finding a path from x to the root of its tree
 • For each node on the path, updated its pointer to point directly to the root:
 if $x \neq \text{parent}(x)$
 \[
 \text{parent}(x) \leftarrow \text{find}(\text{parent}(x))
 \]
 return parent(x)

• For each visited node, the additional work is updating one pointer.
 • Time complexity remains the same asymptotically, i.e., $O(\log n)$.

\[\text{find}(d)\]
Path Compression

- A simple, effective add on to union by rank
 - Find\((x) \) involves finding a path from \(x \) to the root of its tree
 - For each node on the path, updated its pointer to point directly to the root:

 \[
 \text{if } x \neq \text{parent}(x) \\
 \quad \text{parent}(x) \leftarrow \text{find(parent}(x)) \\
 \quad \text{return parent}(x)
 \]

- For each visited node, the additional work is updating one pointer.
 - Time complexity remains the same asymptotically, i.e., \(O(\log n) \).

- For any \(y \) that used to lie on the path from \(x \) to the root, any subsequent call to \(\text{find}(y) \) takes \(O(1) \) time
 - the amortized time is significantly improved.
Disjoint set data structure

- Maintain a set of disjoint forests
 - Apply union-by rank after union operation (attach the tree with smaller rank to the one with higher rank)
 - Apply path compression after find operation (update the pointer of any node on the Find path to point to the root)
 - Note that the height might change after path compression; hence we use term rank as an upper bound for height
Disjoint set data structure

- Maintain a set of disjoint forests
 - Apply union-by rank after union operation (attach the tree with smaller rank to the one with higher rank)
 - Apply path compression after find operation (update the pointer of any node on the Find path to point to the root)
 - Note that the height might change after path compression; hence we use term rank as an upper bound for height

- The amortized time for performing any operation is $O(\alpha(n))$ where $\alpha(n)$ is a very, very, very slow growing function of n similar to inverse Ackermann function.
 - For any practical reason, $\alpha(n) \leq 4$.
 - In practice (not in theory) you can support disjoint operations in constant time.
Disjoint set data structure Review

- Maintain a set of disjoint forests
 - Apply union-by rank after union operation (attach the tree with smaller rank to the one with higher rank)
 - Apply path compression after find operation (update the pointer of any node on the Find path to point to the root)
- The amortized time for performing any operation is $O(\alpha(n))$ where $\alpha(n)$ is a very, very, very slow growing function of n similar to inverse Ackermann function.
\(\alpha(n)\) Description

Let \(f^{(i)}(n)\) denote \(f(n)\) iteratively applied \(i\) times to the initial value of \(n\).

\[
f^{(i)}(n) = \begin{cases}
 n & \text{if } i = 0 \\
 f(f^{(i-1)}(n)) & \text{if } i > 0
\end{cases}
\]
\(\alpha(n) \) Description

- Let \(f^{(i)}(n) \) denote \(f(n) \) iteratively applied \(i \) times to the initial value of \(n \).

\[
f^{(i)}(n) = \begin{cases}
 n & \text{if } i = 0 \\
 f(f^{(i-1)}(n)) & \text{if } i > 0
\end{cases}
\]

- E.g., if \(f(n) = 2n \), then
 \[
 f^{(0)}(n) = n = 2^0 n, \\
f^{(1)}(n) = f(f^{(0)}(n)) = 2(n) = 2^1 n, \\
f^{(2)}(n) = f(f^{(1)}(n)) = 2(2^1 n) = 2^2 n, \\
\ldots \\
f^{(i)}(n) = f(f^{(i-1)}(n)) = 2(2^{i-1} n) = 2^i n,
\]

\[\]
Let $f^{(i)}(n)$ denote $f(n)$ iteratively applied i times to the initial value of n.

$$f^{(i)}(n) = \begin{cases}
 n & \text{if } i = 0 \\
 f(f^{(i-1)}(n)) & \text{if } i > 0
\end{cases}$$

E.g., if $f(n) = 2n$, then

$$f^{(0)}(n) = n = 2^0 n,$$
$$f^{(1)}(n) = f(f^{(0)}(n)) = 2\cdot n = 2^1 n,$$
$$f^{(2)}(n) = f(f^{(1)}(n)) = 2(2^1 n) = 2^2 n,$$

...
$$f^{(i)}(n) = f(f^{(i-1)}(n)) = 2(2^{i-1} n) = 2^i n,$$

E.g., if $f(n) = 2^n$, then

$$f^{(0)}(n) = n$$
$$f^{(1)}(n) = f(f^{(0)}(n)) = f(n) = 2^n$$
$$f^{(2)}(n) = f(f^{(1)}(n)) = f(2^n) = 2^{2^n}$$

...

$$f^{i}(n) = f(f^{(i-1)}(n)) = 2^{2^{\cdot^2 \cdot^2^n}} \} \text{ } i \text{ times}$$
\(\alpha(n) \) Description (cntd.)

- For any \(k \geq 0 \) and \(j \geq 1 \), let

\[
A_k(j) = \begin{cases}
 j + 1 & \text{if } k = 0 \\
 A_{k-1}^{(j+1)}(j) & \text{if } k > 0
\end{cases}
\]

- Function \(A_k(j) \) is strictly increasing in both \(j \) and \(k \)
 - For \(j > 0 \), \(A_1(j) = 2j + 1 \).
 - For \(j > 0 \), \(A_2(j) = 2^{j+1}(j + 1) - 1 \).
 - \(A_3(1) = A_2^{(2)}(1) = A_2(A_2(1)) = A_2(7) = 2^8 \cdot 8 - 1 = 2^{11} - 1 = 2047 \)
 - \(A_4(1) = A_3^{(2)}(1) = A_3(A_3(1)) = A_3(2047) = A_2^{(2048)}(2047) >> \)
 \(A_2(2047) = 2^{2048}(2048) - 1 > 2^{2048} >> 10^{80} \)
 - \(A_4(1) \) is by far larger than the number of atoms in the universe.
\(\alpha(n) \) Description (cntd.)

- \(\alpha(n) \) is the inverse of \(A_k(n) \): \(\alpha(n) = \min\{k \mid A_k(1) \geq n\} \)
- \(\alpha(n) \) is the lowest value of \(k \) for which \(A_k(1) \) is at least \(n \)

\[
\alpha(n) = \begin{cases}
0 & \text{for } 0 \leq n \leq 2 \\
1 & \text{for } n = 3 \\
2 & \text{for } 4 \leq n \leq 7 \\
3 & \text{for } 8 \leq n \leq 2047 \\
4 & \text{for } 2048 \leq n \leq A_4(1)
\end{cases}
\]
\(\alpha(n) \) **Description (cntd.)**

1. \(\alpha(n) \) is the inverse of \(A_k(n) \):
 \[\alpha(n) = \min\{k | A_k(1) \geq n \} \]
2. \(\alpha(n) \) is the lowest value of \(k \) for which \(A_k(1) \) is at least \(n \)

\[
\alpha(n) = \begin{cases}
0 & \text{for } 0 \leq n \leq 2 \\
1 & \text{for } n = 3 \\
2 & \text{for } 4 \leq n \leq 7 \\
3 & \text{for } 8 \leq n \leq 2047 \\
4 & \text{for } 2048 \leq n \leq A_4(1)
\end{cases}
\]

- For any practical purpose, \(\alpha(n) \leq 4 \).
- Theoretically, however, \(\alpha(n) \in \omega(1) \), i.e., for every constant \(c \), there is a very huge \(n \) such that \(\alpha(n) \geq c \).
\[\alpha(n) \] Description (cntd.)

- \(\alpha(n) \) is the inverse of \(A_k(n) \): \(\alpha(n) = \min\{k | A_k(1) \geq n\} \)
 - \(\alpha(n) \) is the lowest value of \(k \) for which \(A_k(1) \) is at least \(n \)

\[
\alpha(n) = \begin{cases}
0 & \text{for } 0 \leq n \leq 2 \\
1 & \text{for } n = 3 \\
2 & \text{for } 4 \leq n \leq 7 \\
3 & \text{for } 8 \leq n \leq 2047 \\
4 & \text{for } 2048 \leq n \leq A_4(1)
\end{cases}
\]

- For any practical purpose, \(\alpha(n) \leq 4 \).
- Theoretically, however, \(\alpha(n) \in \omega(1) \), i.e., for every constant \(c \), there is a very huge \(n \) such that \(\alpha(n) \geq c \).

- Recall that the worst-case amortized time for performing an operation (make-set, union, find) is \(\alpha(n) \).
 - This bound is tight, i.e., we cannot do better than \(\alpha(n) \).
\(\alpha(n) \) Description (cntd.)

- \(\alpha(n) \) is the inverse of \(A_k(n) \): \(\alpha(n) = \min\{k | A_k(1) \geq n\} \)
 - \(\alpha(n) \) is the lowest value of \(k \) for which \(A_k(1) \) is at least \(n \)

\[
\alpha(n) = \begin{cases}
0 & \text{for } 0 \leq n \leq 2 \\
1 & \text{for } n = 3 \\
2 & \text{for } 4 \leq n \leq 7 \\
3 & \text{for } 8 \leq n \leq 2047 \\
4 & \text{for } 2048 \leq n \leq A_4(1)
\end{cases}
\]

- For any practical purpose, \(\alpha(n) \leq 4 \).
- Theoretically, however, \(\alpha(n) \in \omega(1) \), i.e., for every constant \(c \), there is a very huge \(n \) such that \(\alpha(n) \geq c \).

- Recall that the worst-case amortized time for performing an operation (make-set, union, find) is \(\alpha(n) \).
 - This bound is tight, i.e., we cannot do better than \(\alpha(n) \).

- \(\alpha(n) \) is the smallest super-constant function that appears in algorithm analysis (there are smaller ones like \(\alpha(\alpha(n)) \) which don’t appear in analysis of algorithms).