Picture is from the cover of the book by Borodin and El-Yaniv. See Slide 6.
Introduction
In a Glance . . .

- Online algorithms are
 - Practical
 - Diverse
 - Fun (really!)
- Let’s ‘play’ with online algorithms and enjoy
Instructor

- Shahin Kamali
 - joined UM in July 2017
 - before that was a postdoc at MIT (2015-2017)
 - did a PhD at U. Waterloo (2008-2014)
 - In case you wonder, the accent is Persian; he is from Iran.
Students

Your turn to ...

- Introduce yourself.
- Your research group, research interests.
- What makes you interested in this course?
Formalities
Logistics

- Lecture: Tuesdays and Thursdays, 10:00-11:15am
 115 Armes

- Webpage:
 http://www.cs.umanitoba.ca/ kamalis/fall18/comp7720.html

- Piazza: https://piazza.com/umanitoba.ca/fall2018/comp7720

- Office hours: 2:00 pm-3:00 pm, Tuesdays and 11:30-12:30
 Thursdays, in E2 586 or by appointment
A list of required reading will be provided on the course webpage.

No book is required to be purchased.

The following book is suggested as a reference:

- Borodin and El-Yaniv, Online Computation and Competitive Analysis (2005)
Grading

- There will be:
 - Four assignments
 - A final exam
 - A course project

Theorem

The focus of this course is on learning, discovering, and research.

Corollary

Don't worry too much about your final mark (but worry a little bit).
Grading (cntd.)

- Four assignments:
 - 30 percent of the final mark
 - there will be extra marks for bonus questions.
 - submit only pdf files (preferably use \textsf{\LaTeX})
 - we will use both \texttt{Crowdmark}
 - An additional assignment, Assignment 0, will be posted shortly.
 - It gives you a chance to assess your background and learn to work with \textsf{\LaTeX}, Piazza, and Crowdmark.
 - It gives you a chance to drop the course before it is too late if you lack the background.

- Final exam:
 - 30 percent of the final mark
 - It is a closed-book exam.
 - A sample exam will be provided for practice
Projects

- Course project
 - 35 percent of the final mark
 - Extra marks for outstanding projects (publishable projects)
 - Work individually or in groups of two

- Projects involve:
 - Proposal
 - Presentation
 - Final report (in form of a research paper)
Projects (cntd.)

- Project topics will be suggested in the first few weeks of the class
 - You can choose your own topic based on your research
 - Come to office hours to talk about it!

- Project categories:
 - Exploring possible solutions to an open problem
 - Writing a survey paper on a current topic related to online algorithms
 - Writing code to implement and compare the performance of online algorithms for a problem
Projects

- Class participation:
 - 5 percent of the final mark
 - Don’t be shy; ask questions, answer my questions, seat in the frontline!
Important Dates (tentative)

September 6: the first class
September 20: assignment 1 due
September 27: project proposal due
October 11: assignment 2 due
October 18: chocolate cupcake day
October 25: assignment 3 due

November 15: assignment 4 due
November 19: VW deadline
November 20: project presentation starts
December 6: final exam
December 13: project final report due
Online Algorithms
Offline vs. Online Algorithms

- Traditional algorithms are ‘offline’ in the sense that they have the whole input in their hand.
- Online algorithms, in contrast, do not have/need the whole input in order to solve a problem
 - The input is a ‘sequence’ which is processed by the online algorithm piece-by-piece
 - The online algorithms often take irrevocable decisions to process the input.
Bin Packing Problem

- The input is a set/sequence of items of various sizes
 - E.g., \(<9\, 3\, 8\, 5\, 1\, 1\, 3\, 2\, 4\, 2\, 4\, 5\, 5\, 8\, 6\, 4\, 5, \ldots >\).
- The goal is to pack these items into a minimum number of bins of uniform capacity.
Bin Packing Problem (cntd.)

In the online setting:

- an algorithm receives items one by one
- when it receives an item, it has to place it in a bin without any knowledge about forthcoming items
- decisions of the algorithms are irrevocable (i.e., cannot move items between bins)
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

\[<9\ 3\ 8\ 5\ 1\ 1\ 3\ 2\ 4\ 2\ 4\ 5\ 5\ 8\ 6\ 4\ 5> \quad <9\ 3\ 8\ 5\ 1\ 1\ 3\ 2\ 4\ 2\ 4\ 5\ 5\ 8\ 6\ 4> \]
Competitive Ratio

- We use the framework of **competitive analysis** to compare online algorithms.

- Let OPT denote the best possible offline solution.
 - Given a sequence σ, OPT is an algorithm which packs items in σ in a minimum number of bins.

- Competitive ratio of an algorithm A is the maximum ratio between the cost of A and that of OPT over all sequences.

$$
cr(A) \equiv \max_{\sigma} \frac{\text{cost}_A(\sigma)}{\text{cost}_{\text{OPT}}(\sigma)}
$$
Competitive Ratio of First Fit

- For First Fit, the competitive ratio is 1.7 [Johnson 1973]
 - The number of bins opened by FF for any sequence is at most 1.7 times that of Opt, i.e., $c.r. \leq 1.7$ (upper bound for FF)
 - There are sequences for which the number of bins opened by FF is 1.7 times that of Opt, i.e., $c.r. \geq 1.7$ (lower bound for FF)
- The best existing online algorithm has c.r. of 1.5783 [Balogh et al. 2017]
- No algorithm can be better than 1.54037-competitive (best general lower bound) [Balogh et al. 2015].
Ski-rental problem

- Assume you want to go skiing for x number of days
 - In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day
- If we know x, what is the best solution?
 - Buy at the beginning if $x \geq b$, otherwise, rent every day
Online strategy **break-even**: rent for the first $b - 1$ days and buy in the next day.

What is the competitive ratio of Break-even algorithm?

Theorem

Competitive ratio is roughly 2, and it is the best for any deterministic online algorithm.
Syllabus
Doubling technique

- In many occasions, a ‘doubling technique’ can be used to design and analyze online algorithms
 - The lost cow problem
 - Online bidding
Potential function

Potential function technique is a classic approach for analysis of online problems

- The paging problem, Sleator-Tarjan proof, randomized paging
Data structures

- Self-adjusting data structures
 - List update problem
 - Data compression
 - Self-adjusting binary trees, and dynamic optimality conjecture
Packing problems

- Weighting technique
 - Bin packing
 - Renting servers in the cloud
 - Online scheduling
Graph problems

- k-server problem
- Graph coloring
- Bipartite matching
Computation geometry

- Robot searching
- 2-dimensional bin packing
Advice complexity of online problems

- Online algorithms with Advice: what if we have partial information about future?
 - Algorithms with advice for paging, bin packing, list update
- Many project ideas here!
Alternative analysis techniques

- Competitive ratio is a **worst-case measure**
- Alternative analysis techniques are used to compare algorithms based on their typical behaviour
 - Bijective analysis
 - Relative worst-order analysis