COMP 7720 - Online Algorithms

k-Server Problem & Advice

Shahin Kamali

Lecture 13 - Oct. 18, 2017

University of Manitoba
Review & Plan
Today’s objectives

- Review of work-function algorithm
- Randomized algorithms for k-server
- Techniques for advice lower bounds
Work-function Review
Work-function Algorithm

- Consider a fixed initial configuration C_0, input sequence σ

- For a given configuration X and time t work-function is defined as the cost of Opt for serving the first t requests of σ and ending up at configuration X

 $$w_t(X) = \min\{w_{t-1}(Z) + d(X, Z)\} \text{ so that } x_t \in Z;$$
 $$w_0(X) = d(X, C_0)$$

- Work-function can be computer in an **online** manner using dynamic programming
Work Function Algorithm

- Assume we want to serve the t'th request and we are at configuration C.
 - Values of $w_{t-1}(X)$ are computed when serving previous request.
- Step I: compute the values of $w_t(X)$ using the recursive formula.
- Step II: for any configuration X, find $w_t(X) + d(C, X)$.
- Step III: move servers to form the configuration which minimizes this value.
Work Function Algorithm Examples

Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

- Current config.: (A, D), Current request: B

Step I: calculate new work-function values (recall $w_t(X) = \min_Z \{w_{t-1}(Z) + d(X, Z)\}$ so that $x_t \in Z$)

- e.g., $w(A, B) = \min_{Z \in \{(A, B), (B, C), (B, D)\}} \langle w_0(Z) + d((A, B), Z) \rangle$

 $= \min\{2 + 0, 2 + 2, 1 + 3\} = 2$

Step II: find config. with $\min w_t(X) + d(C, X)$

- $X \in \{(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)\}$
 $\min_{X \in \{(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)\}} w_1(X) + d((A, D), X)$
 $= \arg\min\{2 + 2, 3 + 1, 2 + 0, 2 + 2, 1 + 1, 2 + 2\} \rightarrow (B, D)$

Step III: Move servers to config. (B, D)!
Work Function Algorithm Examples

Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

- Current config.: (B, D), Current request: A

Step I: calculate new work-function values (recall $w_t(X) = \min_Z \{w_{t-1}(Z) + d(X, Z)\}$ so that $x_t \in Z$)

 - e.g., $w(A, B) = \min_{Z \in \{(A,B),(A,C),(A,D)\}} \langle w_1(Z) + d((A, B), Z) \rangle$
 \[
 = \min\{2 + 0, 3 + 1, 2 + 2\} = 2
 \]

Step II: find config. with min $w_t(X) + d(C, X)$

 - $\min_{X \in \{(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)\}} \langle w_2(X) + d((B, D), X) \rangle$
 \[
 = \min\{2 + 3, 3 + 2, 2 + 1, 4 + 1, 3 + 0, 4 + 1\} \to (A, D)
 \]

Step III: Move servers to config. (A, D)!
General graphs

- Work-function algorithm:
 - has a competitive ratio of $2k - 1$ competitive for general metrics.
 - k-competitive for line, star, and graphs with $m \leq k + 2$.
 - Trees and general graphs?

- Work-function algorithm is conjectured to be k-competitive for any metric
 - It might answer the k-server conjecture in affirmative (but we are not sure)
Work-function Framework

- Define a ‘configuration’ as the state of an algorithm
 - locations of servers or state of the linked-list (list update), etc.
- Define the ‘distance’ between two configurations based on the cost model
 - distance moved by servers or number of paid exchanges to change the state of the list from one config. to another
- Define the work function $w_t(X)$ as the cost of OPT for serving t requests and ending up at config. X
 - Maintain the work-function in an online manner.
- Work-function algorithm: assume we are at configuration C; switch to a configuration Y that minimizes $w_t(Y) + d(C, Y)$
k-Server & Randomization
Randomized algorithms

Theorem

For any metric space, no algorithm can be better than $\log k$ competitive

- Randomized k-server conjecture: For any metric space there is a randomized $\log k$-competitive algorithm
- Only verified for a class of ‘hierarchical binary trees’
- For general graphs, there is a $O(\log^3 m \log^2 k)$-competitive algorithm [the best result Until October 2018].
- For general graphs, there is a $O(\log^c(k))$-competitive algorithm [FOCS 2018] (c is constant, i.e., the algorithm is poly-log-competitive).
k-Server & Advice
k-server & advice

- How many bits of advice are sufficient to achieve an optimal solution for k-server on a sequence of length n?

- What is advice? For each request x, encode the server that a lazy optimal algorithm uses to serve x.

- What is the size of advice? You can indicate a server using $O(\log k)$ bits; so it is $n \cdot O(\log k) = O(n \log k)$.

- How does the algorithm work? For each request, it uses the server indicated by the advice for that request.

- Why the algorithm is optimal? It works exactly like the lazy optimal algorithm.
k-server & advice

- How many bits of advice are sufficient to achieve an optimal solution when the input is a path?

- What is advice? For each request x a lazy optimal uses the left or right server

- What is the size of advice? For each request you can indicate the left/right server using 1 bits; so it is $n \cdot 1 = n$ bits

- How does the algorithm work? For each request, it uses the server on the side indicated by the advice for that request

- Why the algorithm is optimal? It works exactly like the lazy optimal algorithm
Can we achieve an optimal solution for paths using asymptotically less than $O(n)$ bits?

- The answer is NO!

To prove it, we use a general framework for devising lower bounds!
Binary Guessing Problem

- Assume an online sequence of binary bits such as $\sigma = \langle 0100101 \ldots \rangle$
- Before the next bit is revealed, an online algorithm ‘guesses’ whether it is ‘0’ or ‘1’.
- If no advice, adversary makes algorithm wrongly guess all the time.
- If there is one bit of advice, an algorithm can guess at least half of all bits correctly.
 - The bit indicates whether ‘0’s are more than ‘1’s; the algorithm always guesses the more frequent bit to be the next bit.
- To guess more than half correctly, $\Omega(n)$ bits of advice are required.

Lemma

On an input of length m, any deterministic algorithm that guesses correctly on more than αm bits, for $1/2 < \alpha < 1$, requires at least $(1 + (1 - \alpha) \log(1 - \alpha) + \alpha \log \alpha) \cdot m$ bits of advice.
The binary guessing problem can be reduced to many online problems.

I.e., a linear number of bits of advice are required to achieve close-to-optimal solutions.

Let’s see an example in terms of k-server on line metric.
Consider a line graph formed by 5 nodes and assume $k = 2$ servers are initially located at nodes 2 and 4.

Assume the input is formed by phases of two types
- Type 0: $(3,1,3,2,4,2,4)$
- Type 1: $(3,5,3,2,4,2,4)$

At the beginning of each phase servers are at 2 and 4
- The last requests to 2, 4 in previous phase ensure that any reasonable algorithm has servers at 2,4.

An optimal algorithm incurs a cost of 4 for each phase

The online algorithm should ‘guess’ the type of the phase
- A cost of 4 for a right guess
- A cost of at least 6 for a wrong guess
Consider an input of $n = 7m$ requests formed by m phases.

- The cost of OPT is at most $4m$.

If the algorithm guesses half of phases correctly, its cost will be at least $m/2 \cdot 4 + m/2 \cdot 6 = 5m$.

- Guessing half items correctly \rightarrow competitive ratio of at least $5/4$.

Use the k-server algorithm for binary guessing.

- For each phase, if the algorithm moves server at 2 (resp. 4) for serving the first request at 3, guess the next bit (phase type) to be 0 (resp. 1).

- We know that no binary guessing can guess more than half of phases correctly with $O(m) = O(n)$ advice \rightarrow no k-server algorithm can be better than $5/4$ competitive.
Lower Bound for 2-server with Advice

Theorem

In order to achieve any algorithm with competitive ratio less than 5/4, \(\Omega(n) \) bits of advice are required.

- Recall that \(O(n) \) bits of advice were sufficient to achieve an optimal solution!
- We will see another example of this type of lower bound in the context of list updated