COMP 7720 - Online Algorithms

Online Graph Problems

Shahin Kamali

Lecture 22 - Nov. 27th, 2018

University of Manitoba
Review & Plan
Today’s plan

- Online Edge-coloring
- Online bipartite matching (marriage problem)
- Assignment 4 & logistics
Online Edge Coloring in Graphs
Problem Definition

- In edge coloring, the goal is to color edges of a graph with minimum number of colors
 - No two adjacent edges (edges sharing an endpoint) should have the same color
- In the offline setting, the problem is NP-hard!
- For a graph of max-degree Δ, at least Δ and at most $\Delta + 1$ colors are required (Vizing theorem)
 - This implies that $\text{cost}(\text{OPT}) \approx \Delta$
Problem Definition

- In the online setting, edges arrive one by one, and an algorithm should take an irrevocable decision on coloring the edges without any knowledge about future edges (or how graph looks).
- For example, Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring.
- Cost of OPT is 3
- Cost of Greedy is 4, which is not optimal
Theorem

Greedy has a competitive ratio of at most 2.

For any graph of degree Δ, cost of OPT is at least Δ.

Cost of greedy is at most $2\Delta - 1$.

- Consider the edge that demands the last color.
 - It is an edge between two vertices, each currently adjacent to at most $\Delta - 1$ edges.
 - The number of colors will be $2(\Delta - 1) + 1 = 2\Delta - 1$
Lower Bound

Theorem

No deterministic online algorithm can have a competitive ratio better than 2.

- Adversary forms a graph of degree Δ which can be colored using Δ colors
 - In doing so, any online algorithm needs to use at least 2Δ colors
Lower Bound

- The input starts by sending star of degree $\Delta - 1$
 - Recall that a star of degree d is a tree formed by a center vertex connected to d leaves.
- There are at most $K = \Delta \binom{2\Delta}{\Delta}$ ways to color a star using 2Δ colors.
 - If we have $K + 1$ stars, at least two of them have the same coloring (pigeonhole principle).
 - If we have $2K + 1$ stars, at least three of them have the same coloring.
 - If we have $(\Delta + 1)K + 1$ stars, at least Δ of them will have the same coloring.
Lower Bound

- After sending \((\Delta + 1)K + 1\) stars, at least \(\Delta\) stars have the same coloring.

- Adversary reveals edges forming another star, of degree \(\Delta\), connected to centers of these stars.
 - Any of these new edges requires a color other than the \(\Delta - 1\) colors in the old star.
 - In total \((\Delta - 1) + \Delta = 2\Delta - 1\) colors are used by the algorithm.
Lower Bound

- **OPT** colors edges adjacent to the new center (at the bottom) using Δ colors.
- Other edges form stars connected to only one of the colored edges; each star can be colored using the remaining $\Delta - 1$ colors.
- **OPT** uses Δ colors.
For any given online algorithm, adversary created a graph G so that:

- G has degree Δ → OPT uses Δ colors.
- the online algorithm uses $2\Delta - 1$ colors

Competitive ratio of the algorithm is at least $\frac{2\Delta - 1}{\Delta} \approx 2$
Lower Bound

Theorem

No deterministic online algorithm can have a competitive ratio better than 2.

- This implies that greedy algorithms are the best deterministic algorithm
Online Bipartite Matching
(Marriage problem)
Online Bipartite Matching

- Given a bipartite graph, the goal is to create a matching (creating pair of non-adjacent edges) with maximum size.
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one.
 - Upon arrival of vertex x, all edges connecting x to its neighbors on the left are revealed.
 - An online algorithm should match x with another vertex, if possible, without any information about future vertices.
- **Greedy algorithm:** match with any vertex on the right if possible!
Competitive ratio for max. problems

- In this example, OPT has a **benefit** of 4 (a perfect matching) while greedy has a benefit of 3!

- Matching is a maximization problem: we would like to maximize the benefit instead of minimizing the cost.

- Competitive ratio is often defined as the maximum value of \[\frac{\text{Benefit}(\text{OPT})}{\text{benefit}(\text{Alg})} \]

- Greedy algorithm always creates a maximal matching
 - For any ‘mistake’ match, it blocks two possible matches
 - The benefit of greedy is no less than twice that of OPT

Theorem

Greedy has a competitive ratio of at most 2 (details in the next class).