COMP 7720 - Online Algorithms

Self-Adjusting Trees & Paging

Shahin Kamali

Lecture 7 - Sep. 27, 2017

University of Manitoba
Review & Plan
Today’s objectives

- Self-Adjusting Trees
  - Splay trees
- Paging Problem
Self-Adjusting Trees
Self-Adjusting Lists

- The input is a set of **requests** to items in a list of length $L$
  - The goal is to update the list to adjust it into patterns in the input.
  - There is a lot of **locality** in the input sequence: 
    $\langle 2 \ 2 \ 2 \ 2 \ 2 \ 1 \ 1 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 1 \ 1 \ 1 \ 2 \ 2 \ 2 \rangle$
  - Move-To-Front and Timestamp have competitive ratio of 2, and they are the best deterministic list-update algorithm
The input is a set of requests to items in a BST of size $N$.

- The goal is to update the tree to adjust it into patterns in the input.

- There is a lot of locality in the input sequence.

- Can we apply Move-To-Front for trees?
Splay Trees Idea

- When there is a request to item \( a \), adjust the tree so that \( a \) becomes root in the new tree!
- Use tree rotations to ‘bubble up’ the accessed item.
- We say that we **splay** \( a \) to become root in the adjusted tree
  - It is a natural extension of Move-To-Front to the lists.
Splaying Rotations General Idea

- Consider accessed item $a$, its parent $p$ and grand-parent $g$ (if they exist).

- Reorder $a$, $p$, and $g$ so that $a$ appears ‘above’ the other two
  - If $a$ is smallest/largest, $p$ and $g$ will be in one side of $a$.
  - If $a$ is in between, $p$ and $g$ will be on its left and right.

- After re-ordering $a$, $p$, and $g$, ‘place’ the following four subtrees in their appropriate position to save BST property:
  - the two subtrees of $a$
  - the sibling of $a$ in the subtree of $p$
  - the sibling of $p$ in the subtree of $g$
Splay Example

- E.g., Access $a = 12$

Diagram of a splay tree with numbers 1 through 50.
Splaying Cases (a bit more formal)

- The accessed node $a$ is either
  - Root
  - Child of the root
  - Has both parent ($p$) and grandparent ($g$):
    - Zig-zig pattern: $g \rightarrow p \rightarrow a$ is left-left or right-right
    - Zig-zag pattern: $g \rightarrow p \rightarrow a$ is left-right or right-left
Access root

- if \( x \) is root, do nothing!
Access child of root

- When $x$ is child of the root, do a single rotation to move it above its parent
  - It is called a zig operation
Access LR or RL grandchild

- When $x$ is left-child (resp. right-child) of $P$ and $p$ is right-child (resp. left-child) of $g$, do a double rotation.

- It is called a zig-zag operation
Access LL or RR grandchild

- Reverse the order of $a, p,$ and $g$.
  - It is called a **zig-zig** operation
Splay Example

E.g., Access $a = 6$
Splay Example

E.g., Access $a = 4$
Splaying: Intuition

- The accessed node is moved to ‘front’ (i.e., is now root)
- Let $b$ be a node on the access path from root to the accessed node $a$. If $b$ is at depth $d$ before the splay, its at about depth $d/2$ after the splay.
  - 'Deeper nodes' on the access path tend to move closer to the root
- Splaying gets amortized $O(\log N)$ amortized time.
  - $N$ is the number of nodes in the tree

![Diagram of splaying operation on a binary tree]
BST-Update problem

- So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.
- **BST-Update problem:**
  - The input is an online sequence of requests to items in a BST.
  - Each probe for finding an item \( x \) has cost 1.
  - On the path traversed from the root to \( x \), the algorithm can make any number of rotations at a cost of 1 per rotation.

- **Dynamic Optimality Conjecture:** Splay tree is a competitive solution, i.e., it has a competitive ratio independent of the size \( N \) of tree and length \( n \) of sequence.
  - We know the competitive ratio of splay trees is \( O(\log N) \)
- The best existing algorithm is provided by self-adjusting **Tango Trees**, and has a competitive ratio of \( O(\log \log N) \)
Potential Project Topics

- Write a survey of the self-adjusting data structures (other than linked lists).
  - In particular, think of BSTs and other structures.
  - For example, is there any self-adjusting hash table? what about self-adjusting skip lists?

- Think about advice BST-Update algorithms with advice?
  - How many bits are sufficient to achieve an optimal algorithms?
Paging Problem
**Problem Definition**

- There are two types of memory: a fast ‘cache’ of size $k$, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
  - To serve a request to page $x$, it should be in the cache.
- In case $x$ is not in the cache, a **fault** of cost 1 has happened.
  - The goal is to minimize the total number of faults.
- To bring $x$ to the cache, we might need to **evict** a page.
  - A paging algorithm is defined through its eviction policy.

Cost (number of faults):

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e$$
Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): \(5 \; 6 \; 7\)

\[\sigma = a \; b \; c \; b \; a \; d \; c \; e \; f \; a\]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>e</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
<td>c</td>
<td>d</td>
<td>f</td>
<td>e</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>c</td>
<td>d</td>
<td>f</td>
<td>e</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5 6 7

\[ \sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

| a  | b  | c  | d  | e  | b  | c  | d  | e  | f  | c  | d  | e  | f  | a  | d  
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Offline Algorithm

- **Furthest-In-Future**: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): \(6\)

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e\]
Theorem

Furthest-In-Future (FIF) is the optimal offline algorithm for paging.