COMP 7720 - Online Algorithms

Paging and k-Server Problem

Shahin Kamali

Lecture 12 - Oct. 16, 2017

University of Manitoba
Review & Plan
Today’s objectives

- k-server problem
 - Offline algorithms
 - Work-function algorithm
k-Server Problem
Introduction

k-server problem

We have a metric space of size m with m servers in the graph. A sequence of n requests to the vertices of the graph should be served by a server. Minimize the total distance moved by servers.

\[\sigma = < S, M, K, A, D, B, D, B, D > \]
\[\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1 \]
Introduction

k-sever problem

- We have a metric space of size m
- $k < m$ servers in the graph

\[
\sigma = \langle S, M, K, A, D, B, D, B, D \rangle \\
\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1
\]
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server

\[\sigma = < S, M, K, A, D, B, D, B, D > \]
\[\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1 \]
We have a metric space of size m
- $k < m$ servers in the graph

A sequence of n requests to the vertices of the graph
- Each request should be served by a server

Minimize the total distance moved by servers
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

$\sigma = < S, M, K, A, D, B, D, B, D >$

costs = 2 0 2 1 1 1 1 1 1
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

$\sigma = <S, M, K, A, D, B, D, B, D>$

$\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$
We have a metric space of size m

- $k < m$ servers in the graph

A sequence of n requests to the vertices of the graph

- Each request should be served by a server

Minimize the total distance moved by servers
We have a metric space of size m
- $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

$\sigma = <S, M, K, A, D, B, D, B, D>$
$\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

$$\sigma = \langle S \ M \ K \ A \ D \ B \ D \ B \ D \rangle$$
$$\text{costs} = 2 \quad 0 \quad 2 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

COMP 7720 - Online Algorithms Paging and k-Server Problem
For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

k-server conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

Double coverage algorithm (DCA) proves k-server conjecture holds for paths, trees, and cases with $k = 2$. It is not useful for any other metric (i.e., metrics with a cycle and $k \geq 3$).

The balancing algorithm (Balance) proves k-server conjecture for cases with $m = k + 1$ (m is the size of the metric). It is not competitive for general metrics (even when $k = 2$).
For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

k-server conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

Double coverage algorithm (DCA)
- proves k-server conjecture holds for paths, trees, and cases with $k = 2$
- It is not useful for any other metric (i.e., metrics with a cycle and $k \geq 3$)
Major Results

- For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

- k-server conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

- Double coverage algorithm (DCA)
 - proves k-server conjecture holds for paths, trees, and cases with $k = 2$
 - It is not useful for any other metric (i.e., metrics with a cycle and $k \geq 3$)

- The balancing algorithm (Balance)
 - proves k-server conjecture for cases with $m = k + 1$ (m is the size of the metric).
 - is not competitive for general metrics (even when $k = 2$).
Work Function Algorithm

- Sometimes an offline algorithm can be used as a reference for taking online algorithms
 - Look how the optimal offline algorithm would have served the sequence (if it ended right now)
A configuration indicates the placement of k servers.
A configuration indicates the placement of k servers.

Consider an initial configuration C_0 and a sequence
\[\sigma = \langle x_1, x_2, \ldots, x_t, \ldots, x_n \rangle. \]

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Define the distance d between two configurations as the total distance required for servers to move in order to covert one configuration to another.
Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

$C_0 = (A, D), \ X = (A, B), \ d(C_0, X) = 2$
Work Function Examples

Given a configuration \(X \), the work function \(w_t(X) \) is the cost of optimal solution for serving \(x_1, \ldots, x_t \) and ending up at configuration \(X \).

Assume \(\sigma = \langle B A B A C D \rangle \)
What is \(w_0((B, D)) \)?

\[
C_0 = (B, D), \ Y = (A, C), \ d(C_0, Y) = 1
\]
Work Function Examples

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle B A B A C D \rangle$

 What is $w_0((B, D))$? It is 1!

$C_0 = (B, D), \ Y = (A, C), \ d(C_0, Y) = 1$
Introduction

Work Function Examples

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle B\text{BA}BACD \rangle$

What is $w_0((B, D))$? It is 1!

What is $w_1(B, D)$?

- Serve the request to B and be at conf. (B, D)?

Serve the request to B and be at conf. (B, D)?
Introduction

Work Function Examples

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle B A B A C D \rangle$
 What is $w_0((B, D))$? It is 1!

- What is $w_1(B, D)$?
 - Serve the request to B and be at conf. (B, D)?
 - $w_1(B, D) = 1$.

COMP 7720 - Online Algorithms Paging and k-Server Problem

7 / 15
Work Function Examples

- Given a configuration \(X \), the work function \(w_t(X) \) is the cost of optimal solution for serving \(x_1, \ldots, x_t \) and ending up at configuration \(X \).

- Assume \(\sigma = \langle BABACD \rangle \)
 What is \(w_0((B, D)) \)? it is 1!

- What is \(w_1(B, D) \)?
 - Serve the request to \(B \) and be at conf. \((B, D) \)
 - \(w_1(B, D) = 1 \).

- What is \(w_1(A, D) \)?
Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle B A B A C D \rangle$

What is $w_0((B, D))$? It is 1!

What is $w_1(B, D)$?

- Serve the request to B and be at conf. (B, D)?
- $w_1(B, D) = 1$.

What is $w_1(A, D)$?

- Serve the request to B and be at conf. (A, D)
- Move A to B and take it back $\rightarrow w_1(A, D) = 2$
Introduction

Work Function Examples

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle BABACD \rangle$
 - What is $w_0((B, D))$? It is 1!

- What is $w_1(B, D)$?
 - Serve the request to B and be at conf. (B, D)?
 - $w_1(B, D) = 1$.

- What is $w_1(A, D)$?
 - Serve the request to B and be at conf. (A, D)
 - Move A to B and take it back $\rightarrow w_1(A, D) = 2$

- What is $w_2(A, D)$? \rightarrow Serve the requests to BA and be at conf. (A, D)
Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle BABACD \rangle$

What is $w_0((B, D))$? It is 1!

What is $w_1(B, D)$?
- Serve the request to B and be at conf. (B, D)?
- $w_1(B, D) = 1$.

What is $w_1(A, D)$?
- Serve the request to B and be at conf. (A, D)
- Move A to B and take it back $\rightarrow w_1(A, D) = 2$.

What is $w_2(A, D)$? \rightarrow Serve the requests to BA and be at conf. (A, D)
- Move A to B and take it back $\rightarrow w_2(A, D) = 2$.

COMP 7720 - Online Algorithms

Paging and k-Server Problem
Introduction

Work Function Examples

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle B A B A C D \rangle$

What is $w_3(A, D)$?

Greedy is not optimal!
Introduction

Work Function Examples

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle BABA \rangle$

- What is $w_3(A, D)$?
 - Serve the requests to BAB and be at conf. (B, D)?
 - $w_3(A, D) = 4$.
Introduction

Work Function Examples

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle BABA \rangle$

- What is $w_3(A, D)$?
 - Serve the requests to BAB and be at conf. (B, D)?
 - $w_3(A, D) = 4$.

- What is $w_3(A, B)$?
Introduction

Work Function Examples

- Given a configuration X, the **work function** $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.
- Assume $\sigma = \langle B A B A C D \rangle$
- What is $w_3(A, D)$?
 - Serve the requests to BAB and be at conf. (B, D)?
 - $w_3(A, D) = 4$.
- What is $w_3(A, B)$?
 - Serve the requests to BAB and be at conf. $(A, B) \rightarrow w_3(A, B) = 2$.

Greedy is not optimal!
Work Function Examples

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle BABA, CD \rangle$

What is $w_3(A, D)$?
- Serve the requests to BAB and be at conf. (B, D)?
- $w_3(A, D) = 4$.

What is $w_3(A, B)$?
- Serve the requests to BAB and be at conf. $(A, B) \rightarrow w_3(A, B) = 2$.

$w_3(A, B) < w_3(A, D) \rightarrow$ optimal algorithm prefers to have its servers on A and B rather than A and D after serving $t = 3$ requests
- Greedy is not optimal!
Computing Work Function

- Given a configuration X, the **work function** $w_t(X)$ is the cost of optimal solution for serving $x_1, \ldots, x_{t-1}, x_t$ and ending up at configuration X.

- How to compute work function $w_t(X)$?

- Let Y_1 be the config. of OPT after serving x_{t-1}, Y_2 is the config. after serving x_t (so $x_t \in Y_2$, i.e., Y has a server at x_t).
 - OPT's configuration changes from Y_1 to Y_2 and then to X
 - For fixed Y_1, Y_2 we have
 $$ w_t(X) = w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X); \ x_t \in Y_2 $$
Introduction

Computing Work Function

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving $x_1, \ldots, x_{t-1}, x_t$ and ending up at configuration X.

- How to compute work function $w_t(X)$?

- Let Y_1 be the config. of OPT after serving x_{t-1}, Y_2 is the config. after serving x_t (so $x_t \in Y_2$, i.e., Y has a server at x_t).
 - OPT's configuration changes from Y_1 to Y_2 and then to X
 - For fixed Y_1, Y_2 we have
 \[w_t(X) = w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X); x_t \in Y_2 \]

- OPT chose the previous configurations so that work function (its cost) is minimized
 - $w_t(X) = \min_{Y_1, Y_2} \{w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X)\}$ so that $x_t \in Y_2$
 \[Z = Y_1 = Y_2 \]
 - $w_t(X) = \min_{Z} \{w_{t-1}(Z) + d(X, Z)\}$ so that $x_t \in Z$
Computing Work Function

Given a configuration X, the **work function** $w_t(X)$ is the cost of optimal solution for serving $x_1, \ldots, x_{t-1}, x_t$ and ending up at configuration X.

How to compute work function $w_t(X)$?

Let Y_1 be the config. of OPT after serving x_{t-1}, Y_2 is the config. after serving x_t (so $x_t \in Y_2$, i.e., Y has a server at x_t).

- **OPT**'s configuration changes from Y_1 to Y_2 and then to X
- For fixed Y_1, Y_2 we have
 $$w_t(X) = w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X); \ x_t \in Y_2$$

OPT chose the previous configurations so that work function (its cost) is minimized

- $w_t(X) = \min_{Y_1, Y_2} \{w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X)\}$ so that $x_t \in Y_2$
- \[Z = Y_1 = Y_2 \]
 $$w_t(X) = \min_Z \{w_{t-1}(Z) + d(X, Z)\} \text{ so that } x_t \in Z$$
- $w_0(X) = d(X, C_0)$
Computing Work Function

\[w_t(X) = \min_{Z} \{ w_{t-1}(Z) + d(X, Z) \} \quad x_t \in Z; \quad w_0(X) = d(X, C_0) \]

Find all values of work function values using dynamic programming!
Computing Work Function

\[w_t(X) = \min_{Z} \{ w_{t-1}(Z) + d(X, Z) \} \quad x_t \in Z; \quad w_0(X) = d(X, C_0) \]

- Find all values of work function values using dynamic programming!

E.g.,
\[
\begin{align*}
w_{t-1}(C_1) &= 21, \quad w_{t-1}(C_2) = 15, \quad w_{t-1}(C_3) = 10, \quad w_{t-1}(C_4) = 11 \\
d(C_1, C_2) &= 3, \quad d(C_1, C_3) = 5, \quad d(C_1, C_4) = 1. \\
d(C_2, C_3) &= 4, \quad d(C_2, C_4) = 2, \quad d(C_3, C_4) = 2.
\end{align*}
\]

Assume \(x_t \) is present in all \(C_1, C_2, C_3 \) but not in \(C_4 \).

\[w_t(C_1) = \min\{(21 + 0, 15 + 3, 10 + 5) = 15\} \]
Computing Work Function

\[w_t(X) = \min_{Z} \{w_{t-1}(Z) + d(X, Z)\} \ x_t \in Z; \quad w_0(X) = d(X, C_0) \]

Find all values of work function values using dynamic programming!

E.g.,
\[w_{t-1}(C_1) = 21, w_{t-1}(C_2) = 15, w_{t-1}(C_3) = 10, w_{t-1}(C_4) = 11 \]
\[d(C_1, C_2) = 3, d(C_1, C_3) = 5, d(C_1, C_4) = 1. \]
\[d(C_2, C_3) = 4, d(C_2, C_4) = 2, d(C_3, C_4) = 2. \]

Assume \(x_t \) is present in all \(C_1, C_2, C_3 \) but not in \(C_4 \).

\[w_t(C_1) = \min\{(21 + 0, 15 + 3, 10 + 5) = 15\} \]
\[w_t(C_2) = \min\{(21 + 3, 15 + 0, 10 + 4) = 14\} \]
Computing Work Function

\[w_t(X) = \min_Z \{ w_{t-1}(Z) + d(X, Z) \} \quad x_t \in Z; \quad w_0(X) = d(X, C_0) \]

Find all values of work function values using dynamic programming!

E.g.,
\[w_{t-1}(C_1) = 21, \quad w_{t-1}(C_2) = 15, \quad w_{t-1}(C_3) = 10, \quad w_{t-1}(C_4) = 11 \]
\[d(C_1, C_2) = 3, \quad d(C_1, C_3) = 5, \quad d(C_1, C_4) = 1. \]
\[d(C_2, C_3) = 4, \quad d(C_2, C_4) = 2, \quad d(C_3, C_4) = 2. \]

Assume \(x_t \) is present in all \(C_1, C_2, C_3 \) but not in \(C_4 \).

\[w_t(C_1) = \min \{ (21 + 0, 15 + 3, 10 + 5) = 15 \} \]
\[w_t(C_2) = \min \{ (21 + 3, 15 + 0, 10 + 4) = 14 \} \]
\[w_t(C_3) = \min \{ (21 + 5, 15 + 4, 10 + 0) = 10 \} \]
Computing Work Function

- \(w_t(X) = \min_{Z} \{w_{t-1}(Z) + d(X, Z)\} \quad x_t \in Z \);
- \(w_0(X) = d(X, C_0) \)

Find all values of work function values using dynamic programming!

E.g.,
- \(w_{t-1}(C_1) = 21, \ w_{t-1}(C_2) = 15, \ w_{t-1}(C_3) = 10, \ w_{t-1}(C_4) = 11 \)
- \(d(C_1, C_2) = 3, \ d(C_1, C_3) = 5, \ d(C_1, C_4) = 1 \)
- \(d(C_2, C_3) = 4, \ d(C_2, C_4) = 2, \ d(C_3, C_4) = 2 \).

Assume \(x_t \) is present in all \(C_1, \ C_2, \ C_3 \) but not in \(C_4 \).

- \(w_t(C_1) = \min\{(21 + 0, 15 + 3, 10 + 5) = 15\} \)
- \(w_t(C_2) = \min\{(21 + 3, 15 + 0, 10 + 4) = 14\} \)
- \(w_t(C_3) = \min\{(21 + 5, 15 + 4, 10 + 0) = 10\} \)
- \(w_t(C_4) = \min\{(21 + 1, 15 + 2, 10 + 2) = 12\} \)
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming

<table>
<thead>
<tr>
<th>confs\input</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_Z w_n(Z) \)

confs\input

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_{Z} w_n(Z) \)
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_Z w_n(Z) \)

<table>
<thead>
<tr>
<th>confs/input</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>* *</td>
<td>* * *</td>
<td>* * * * * * * * * * * * * *</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>* *</td>
<td>* * *</td>
<td>* * * * * * * * * * * * * *</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>* *</td>
<td>* * *</td>
<td>* * * * * * * * * * * * * *</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>* *</td>
<td>* * *</td>
<td>* * * * * * * * * * * * * *</td>
</tr>
</tbody>
</table>
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_{Z} w_n(Z) \)

```
confs\input

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
</table>
| C1 | * | * | * | *   | *   | * | 21 15
| C2 | * | * | * | *   | *   | * | 15 14
| C3 | * | * | * | *   | *   | * | 10 14
| C4 | * | * | * | *   | *   | * | 11 16
```
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_Z w_n(Z) \)

confs\input

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>....</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_{Z} w_n(Z) \)
- Move backward to find the right moves!

\[\text{confs\input}\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>....</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>11</td>
<td>16</td>
</tr>
</tbody>
</table>
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min \limits_Z w_n(Z) \)
- Move backward to find the right moves!
- Can I do this in online manner?

```
conf\$input

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>21</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>15</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>10</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>11</td>
</tr>
</tbody>
</table>
```
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_{Z} w_n(Z) \)
- Move backward to find the right moves!
- Can I do this in online manner?
 - We can set work function values online!

\[\text{confs/input} \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_{Z} w_n(Z) \)
- Move backward to find the right moves!
- Can I do this in online manner?
 - We can set work function values online!
 - We cannot do the backward move

confs\input

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>....</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Introduction

Work-function algorithm

- Maintain work-function values in an online manner
- Assume we are at configuration X before serving the t'th request to x
Introduction

Work-function algorithm

- Maintain work-function values in an online manner
- Assume we are at configuration X before serving the t’th request to x
- There are k options for a lazy algorithm to serve the tth request
 - Each associated with a configuration Y (so that $x \in Y$)
Introduction

Work-function algorithm

- Maintain work-function values in an online manner

- Assume we are at configuration X before serving the t’th request to x

- There are k options for a lazy algorithm to serve the tth request

 - Each associated with a configuration Y (so that $x \in Y$)

- work-function algorithm selects the configuration Y so that minimizes $w_t(Y) + d(X, Y)$
Introduction

Work-function algorithm

- Maintain work-function values in an online manner
- Assume we are at configuration X before serving the t'th request to x
- There are k options for a lazy algorithm to serve the tth request
 - Each associated with a configuration Y (so that $x \in Y$)
- work-function algorithm selects the configuration Y so that minimizes $w_t(Y) + d(X, Y)$
Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

Current configuration: (A, D)

```
<table>
<thead>
<tr>
<th>confs\input</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>(A,B)</td>
</tr>
<tr>
<td>(A,D)</td>
</tr>
<tr>
<td>.</td>
</tr>
</tbody>
</table>
```
Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

Current configuration: (A, D)

<table>
<thead>
<tr>
<th>confs\input</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,B)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(A,D)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ \ldots \rangle$

- Current configuration: (A, D)
- Current request: B

config. (A, B):
$w_1(A, B) + d((A, B), (A, D)) = 2 + 2 = 4$

config. (A, D):
$w_1(A, D) + d((A, D), (A, D)) = 2 + 0 = 2$
\rightarrow config. (A, D) is preferred!
Assume $\sigma = \langle B\ A\ B\ A\ B\ A\ \ldots \rangle$

Current configuration: (A, D)

Current request: A

config. (A, B):
\[w_2(A, B) + d((A, B), (A, D)) = 2 + 2 = 4 \]

config (A, D):
\[w_2(A, D) + d((A, D), (A, D)) = 2 + 0 = 2 \]
→ config. (A, D) is preferred!

\[
\begin{array}{c|ccc}
\text{confs\ input} & 0 & 1 & 2 \\
\hline
\text{(A,B)} & 2 & 2 & 2 \\
\text{(A,D)} & 0 & 2 & 2 \\
\end{array}
\]
Assume \(\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle \)

Current configuration: \((A, D)\)

Current request: \(B\)

- \text{config. } (A, B):
 \[w_3(A, B) + d((A, B), (A, D)) = 2 + 2 = 4 \]

- \text{config } (A, D):
 \[w_3(A, D) + d((A, D), (A, D)) = 4 + 0 = 4 \]

Both configurations are the same (assume algorithm chooses \((A, D)\))

\[\text{confs\ input} \]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\hline
(A, B) & 2 & 2 & 2 & 2 \\
(A, D) & 0 & 2 & 2 & 4 \\
\end{array}
\]
Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

Current configuration: (A, D)

Current request: A

config. (A, B):

$w_4(A, B) + d((A, B), (A, D)) = 2 + 2 = 4$

config (A, D):

$w_4(A, D) + d((A, D), (A, D)) = 4 + 0 = 4$

Both configurations are the same (assume algorithm chooses (A, D))
Assume $\sigma = \langle B \; A \; B \; A \; B \; A \; \ldots \rangle$

Current configuration: (A, D)

- Current request: A
 - config. (A, B):
 \[w_5(A, B) + d((A, B), (A, D)) = 2 + 2 = 4 \]
 - config (A, D):
 \[w_5(A, D) + d((A, D), (A, D)) = 6 + 0 = 6 \]
- Now (A, B) is preferred \rightarrow move server 2 instead of 1!
Assume $\sigma = \langle B\ A\ B\ A\ B\ A\ \ldots \rangle$

Current configuration: (A, D)

The worse-case sequences for greedy do not cause problem for work function algorithm!

<table>
<thead>
<tr>
<th>confs\input</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,B)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(A,D)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
Introduction

General graphs

- Work-function algorithm:
Introduction

General graphs

- Work-function algorithm:
 - has a competitive ratio of $2k - 1$ competitive for general metrics.
General graphs

Work-function algorithm:

- has a competitive ratio of $2k - 1$ competitive for general metrics.
- k-competitive for line, star, and graphs with $m \leq k + 2$.
- Trees and general graphs?
Introduction

General graphs

- **Work-function algorithm:**
 - has a competitive ratio of $2k - 1$ competitive for general metrics.
 - k-competitive for line, star, and graphs with $m \leq k + 2$.
 - Trees and general graphs?

- **Work-function algorithm is conjectured to be k-competitive for any metric**
Introduction

General graphs

- Work-function algorithm:
 - has a competitive ratio of $2k - 1$ competitive for general metrics.
 - k-competitive for line, star, and graphs with $m \leq k + 2$.
 - Trees and general graphs?

- Work-function algorithm is conjectured to be k-competitive for any metric
 - It might answer the k-server conjecture in affirmative (but we are not sure)
Define a ‘configuration’ as the state of an algorithm
- locations of servers or state of the linked-list (list update), etc.
Introduction

Work-function Framework

- Define a ‘configuration’ as the state of an algorithm
 - locations of servers or state of the linked-list (list update), etc.
- Define the ‘distance’ between two configurations based on the cost model
 - distance moved by servers or number of paid exchanges to change the state of the list from one config. to another

Define \(w_t(X) \) as the cost of Opt for serving \(t \) requests and ending up at config. \(X \)

Maintain the work-function in an online manner.

Work-function algorithm: assume we are at configuration \(C \); switch to a configuration \(Y \) that minimizes \(w_t(Y) + d(C, Y) \).
Work-function Framework

- Define a ‘configuration’ as the state of an algorithm
 - locations of servers or state of the linked-list (list update), etc.
- Define the ‘distance’ between two configurations based on the cost model
 - distance moved by servers or number of paid exchanges to change the state of the list from one config. to another
- Define the work function $w_t(X)$ as the cost of OPT for serving t requests and ending up at config. X
 - Maintain the work-function in an online manner.
Work-function Framework

- Define a ‘configuration’ as the state of an algorithm
 - locations of servers or state of the linked-list (list update), etc.
- Define the ‘distance’ between two configurations based on the cost model
 - distance moved by servers or number of paid exchanges to change the state of the list from one config. to another
- Define the work function $w_t(X)$ as the cost of OPT for serving t requests and ending up at config. X
 - Maintain the work-function in an online manner.
- Work-function algorithm: assume we are at configuration C; switch to a configuration Y that minimizes $w_t(Y) + d(C, Y)$