Online Bin Packing

Shahin Kamali

Lecture 18 - Nov. 6th, 2018

University of Manitoba
Today’s objectives

- Average-case analysis of Best Fit and other algorithms
- An application of bin packing in Cloud
Analysis Measures

- Compare the performance of an online algorithm A with an optimal offline algorithm OPT:
 - OPT knows the whole sequence in the beginning.
 - OPT can change its packing at any time.
Analysis Measures

- Compare the performance of an online algorithm A with an optimal offline algorithm OPT:
 - OPT knows the whole sequence in the beginning.
 - OPT can change its packing at any time.

- Competitive ratio of A is the maximum value of $\frac{A(\sigma)}{\text{OPT}(\sigma)}$ among all sequences σ.
 - We are interested in the asymptomatic competitive ratio where $\text{OPT}(\sigma)$ is arbitrary large.
Review & Plan

Analysis Measures

• Compare the performance of an online algorithm A with an optimal offline algorithm OPT:

 1. OPT knows the whole sequence in the beginning.
 2. OPT can change its packing at any time.

• Competitive ratio of A is the maximum value of $A(\sigma)/\text{OPT}(\sigma)$ among all sequences σ.

 We are interested in the asymptomatic competitive ratio where $\text{OPT}(\sigma)$ is arbitrary large.

• Average case ratio of A is the expected value of $A(\sigma)/\text{OPT}(\sigma)$.

 Item sizes are generated randomly and independently, from an identical distribution (typically uniform distribution).
Analysis Measures

- Compare the performance of an online algorithm \(A \) with an optimal offline algorithm \(\text{OPT} \):
 - \(\text{OPT} \) knows the whole sequence in the beginning.
 - \(\text{OPT} \) can change its packing at any time.

- Competitive ratio of \(A \) is the maximum value of \(\frac{A(\sigma)}{\text{OPT}(\sigma)} \) among all sequences \(\sigma \).
 - We are interested in the asymptomatic competitive ratio where \(\text{OPT}(\sigma) \) is arbitrary large.

- Average case ratio of \(A \) is the expected value of \(\frac{A(\sigma)}{\text{OPT}(\sigma)} \).
 - Item sizes are generated randomly and independently, from an identical distribution (typically uniform distribution).

- Expected waste of \(A \) is the expected value of \(A(\sigma) - \text{OPT}(\sigma) \).
Consider **upright matching** problem.

- We are given n points in a 1×1 coordinate.
- The goal is to match a maximum number of ⊖ with ⊕ points.
- Each ⊖ point can be matched only to ⊕ points on its upright position.
- Labels and positions of points are i.i.d. random variables.
Consider **upright matching** problem.

- We are given n points in a 1×1 coordinate.
- The goal is to match a maximum number of \ominus with \oplus points.
- Each \ominus point can be matched only to \oplus points on its upright position.
- Labels and positions of points are i.i.d. random variables.

Greedy algorithm: process *ominus* points one by one from top to bottom.

- Match each \ominus item with the left-most unmatched \oplus item above it.
Consider upright matching problem.

- We are given n points in a 1×1 coordinate.
- The goal is to match a maximum number of \ominus with \oplus points.
- Each \ominus point can be matched only to \oplus points on its upright position.
- Labels and positions of points are i.i.d. random variables.

Greedy algorithm: process $ominus$ points one by one from top to bottom.

- Match each \ominus item with the left-most unmatched \oplus item above it.

It is known that Greedy matches all points except and expected number of $\Theta(\sqrt{n} \log^{3/4} n)$ points.
Consider **upright matching** problem.

- We are given n points in a 1×1 coordinate.
- The goal is to match a maximum number of \ominus with \oplus points.
- Each \ominus point can be matched only to \oplus points on its upright position.
- Labels and positions of points are i.i.d. random variables.

Greedy algorithm: process *ominus* points one by one from top to bottom.

- Match each \ominus item with the left-most unmatched \oplus item above it.

It is known that Greedy matches all points except and expected number of $\Theta(\sqrt{n} \log^{3/4} n)$ points.
Consider **upright matching** problem.

- We are given \(n \) points in a \(1 \times 1 \) coordinate.
- The goal is to match a maximum number of ⊖ with ⊕ points.
- Each ⊖ point can be matched only to ⊕ points on its upright position.
- Labels and positions of points are i.i.d. random variables.

Greedy algorithm: process *ominus* points one by one from top to bottom.

- Match each ⊖ item with the left-most unmatched ⊕ item above it.

It is known that Greedy matches all points except and expected number of \(\Theta(\sqrt{n} \log^{3/4} n) \) points.
Consider upright matching problem.

- We are given n points in a 1×1 coordinate.
- The goal is to match a maximum number of \ominus with \oplus points.
- Each \ominus point can be matched only to \oplus points on its upright position.
- Labels and positions of points are i.i.d. random variables.

Greedy algorithm: process \ominus points one by one from top to bottom.

- Match each \ominus item with the left-most unmatched \oplus item above it.

It is known that Greedy matches all points except and expected number of $\Theta(\sqrt{n} \log^{3/4} n)$ points.
Consider upright matching problem.

- We are given n points in a 1×1 coordinate.
- The goal is to match a maximum number of \ominus with \oplus points.
- Each \ominus point can be matched only to \oplus points on its upright position.
- Labels and positions of points are i.i.d. random variables.

Greedy algorithm: process $ominus$ points one by one from top to bottom.

- Match each \ominus item with the left-most unmatched \oplus item above it.

It is known that Greedy matches all points except and expected number of $\Theta(\sqrt{n} \log^{3/4} n)$ points.
Consider a bin packing sequence of length \(n \) with item sizes randomly distributed in \((0, 1]\).

Create an instance of upright matching:

- Items are mapped to points in the square.
- An item of size \(\alpha > 0.5 \) gets an \(\oplus \) label and \(x \)-coordinate \(2(1 - \alpha) \).
- An item of size \(\alpha \leq 0.5 \) gets an \(\ominus \) label and \(x \)-coordinate \(2\alpha \).
- \(y \)-coordinate of the item at index \(i \) is set randomly in \(\lfloor i/n \rfloor, \lceil i/n \rceil \)

E.g., \(\sigma = \langle 0.53, 0.69, 0.21, 0.78, 0.4 \rangle \)
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

Consider a bin packing sequence of length n with item sizes randomly distributed in $(0, 1]$.

Create an instance of upright matching:

- Items are mapped to points in the square.
- An item of size $\alpha > 0.5$ gets an \oplus label and x-coordinate $2(1 - \alpha)$.
- An item of size $\alpha \leq 0.5$ gets an \ominus label and x-coordinate 2α.
- y-coordinate of the item at index i is set randomly in $\lfloor i/n \rfloor, \lceil i/n \rceil$

E.g., $\sigma = \langle 0.53, 0.69, 0.21, 0.78, 0.4 \rangle$
Consider a bin packing sequence of length n with item sizes randomly distributed in $(0, 1]$.

Create an instance of upright matching:

- Items are mapped to points in the square.
- An item of size $\alpha > 0.5$ gets an \oplus label and x-coordinate $2(1 - \alpha)$.
- An item of size $\alpha \leq 0.5$ gets an \ominus label and x-coordinate 2α.
- y-coordinate of the item at index i is set randomly in $\lfloor i/n \rfloor, \lceil i/n \rceil$

E.g., $\sigma = \langle 0.53, 0.69, 0.21, 0.78, 0.4 \rangle$
Consider a bin packing sequence of length \(n \) with item sizes randomly distributed in \((0, 1]\).

Create an instance of upright matching:

- Items are mapped to points in the square.
- An item of size \(\alpha > 0.5 \) gets an \(\oplus \) label and \(x \)-coordinate \(2(1 - \alpha) \).
- An item of size \(\alpha \leq 0.5 \) gets an \(\ominus \) label and \(x \)-coordinate \(2\alpha \).
- \(y \)-coordinate of the item at index \(i \) is set randomly in \(\lfloor i/n \rfloor, \lceil i/n \rceil \).
- E.g., \(\sigma = \langle 0.53, 0.69, 0.21, 0.78, 0.4 \rangle \)
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

Consider a bin packing sequence of length n with item sizes randomly distributed in $(0, 1]$.

Create an instance of upright matching:

- Items are mapped to points in the square.
- An item of size $\alpha > 0.5$ gets an \oplus label and x-coordinate $2(1 - \alpha)$.
- An item of size $\alpha \leq 0.5$ gets an \ominus label and x-coordinate 2α.
- y-coordinate of the item at index i is set randomly in $\lfloor i/n \rfloor, \lceil i/n \rceil$

E.g., $\sigma = \langle 0.53, 0.69, 0.21, 0.78, 0.4 \rangle$
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

- Consider a bin packing sequence of length n with item sizes randomly distributed in $(0, 1]$.
- Create an instance of upright matching:
 - Items are mapped to points in the square.
 - An item of size $\alpha > 0.5$ gets an \oplus label and x-coordinate $2(1 - \alpha)$.
 - An item of size $\alpha \leq 0.5$ gets an \ominus label and x-coordinate 2α.
 - y-coordinate of the item at index i is set randomly in $\lfloor i/n \rfloor, \lceil i/n \rceil$
- E.g., $\sigma = \langle 0.53, 0.69, 0.21, 0.78, 0.4 \rangle$
Consider a bin packing sequence of length n with item sizes randomly distributed in $(0, 1]$.

Create an instance of upright matching:

- Items are mapped to points in the square.
- An item of size $\alpha > 0.5$ gets an \oplus label and x-coordinate $2(1 - \alpha)$.
- An item of size $\alpha \leq 0.5$ gets an \ominus label and x-coordinate 2α.
- y-coordinate of the item at index i is set randomly in $[i/n], [i/n]$

E.g., $\sigma = \langle 0.53, 0.69, 0.21, 0.78, 0.4 \rangle$
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

- Points receive random labels (with a chance of 0.5 an item is larger than 0.5 (⊕) and with a chance of 0.5 it is ≤ 0.5 (⊖)).

![Diagram showing the relationship between time and the size of items.](image.png)
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

Points receive random labels (with a chance of 0.5 an item is larger than 0.5 (\oplus) and with a chance of 0.5 it is ≤ 0.5 (\ominus)).

Points x-coordinates are random

- for an \oplus point, item size x is random in $U(0.5, 1]$ and hence $2(1 - x)$ is random in $U[0, 1)$
- for an \ominus point, item size x is random in $U(0, 0.5]$ and hence $2(x)$ is random in $U(0, 1]$
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

- Points receive random labels (with a chance of 0.5 an item is larger than 0.5 (⊕) and with a chance of 0.5 it is ≤ 0.5 (⊖)).

- Points x-coordinates are random
 - for an ⊕ point, item size x is random in $U(0.5, 1]$ and hence $2(1 - x)$ is random in $U[0, 1)$
 - for an ⊖ point, item size x is random in $U(0, 0.5]$ and hence $2(x)$ is random in $U(0, 1]$

- Points y-coordinates are random
 - Exactly one point is located randomly in $U[i/n, (i + 1)/n)$
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

What is the equivalent of greedy algorithm?
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

- What is the equivalent of greedy algorithm?
 - An \oplus point y appears on the right of x if sum of items x and y is less than 1.
 - y is on right of $x \rightarrow 2(1 - y) \geq 2x \rightarrow x + y \leq 1$
Average-case Analysis of Best Fit

Reduction of bin packing to upright matching

What is the equivalent of greedy algorithm?

- An \(\oplus \) point \(y \) appears on the right of \(x \) if sum of items \(x \) and \(y \) is less than 1.
 - \(y \) is on right of \(x \) →
 \[2(1 - y) \geq 2x \rightarrow x + y \leq 1 \]

- Greedy matches each \(\ominus \) point \(p \) (item \(x \leq 0.5 \)) with the leftmost \(\oplus \) point (largest item \(y \) so that \(> 0.5 \)) that appears above (i.e., \(y \) is before \(x \) in the sequence) and on the right of \(p \) (i.e., \(x + y \leq 1 \)).
Greedy is equivalent to **Almost Best Fit**: if $x > \frac{1}{2}$, open a new bin for x. If $x \leq \frac{1}{2}$, place x with an item $y \geq 0$ which best fits x (i.e., largest such y so that $x + y \leq 1$). If no such y exists, open a new bin for x.

Almost Best Fit is similar to Best Fit except that it closes a bin as soon as an item of size $\leq \frac{1}{2}$ is placed in it.
Greedy is equivalent to **Almost Best Fit**:
- If $x > 1/2$, open a new bin for x.
- If $x \leq 1/2$, place x with an item $y \geq 0.5$ which best fits x (i.e., largest such y so that $x + y \leq 1$).
- If no such y exists, open a new bin for x.
Average-case Analysis of Best Fit

Best Fit & upright matching

- Greedy is equivalent to **Almost Best Fit**:
 - If \(x > 1/2 \), open a new bin for \(x \).
 - If \(x \leq 1/2 \), place \(x \) with an item \(y \geq 0.5 \) which best fits \(x \) (i.e., largest such \(y \) so that \(x + y \leq 1 \)).
 - If no such \(y \) exists, open a new bin for \(x \).

- Almost Best Fit is similar to Best Fit except that:
 - It closes a bin as soon as an item of size \(\leq 1/2 \) is placed in it.
Average-case Analysis of Best Fit

Best Fit & upright matching

Greedy is equivalent to Almost Best Fit:

- If $x > 1/2$, open a new bin for x.
- If $x \leq 1/2$, place x with an item $y \geq 0.5$ which best fits x (i.e., largest such y so that $x + y \leq 1$).
- If no such y exists, open a new bin for x.

Almost Best Fit is similar to Best Fit except that:

- It closes a bin as soon as an item of size $\leq 1/2$ is placed in it.

Any sequence, the cost of Best Fit is at most equal to Almost-Best-Fit.
Average-case analysis of Best Fit

Number of unmatched point by greedy is expected to be $\Theta(\sqrt{n} \log^{3/4} n)$.
Average-case Analysis of Best Fit

Average-case analysis of Best Fit

- Number of unmatched point by greedy is expected to be $\Theta(\sqrt{n}\log^{3/4} n)$.

- So, the number of bins in Almost Best Fit (ABF) is expected to be $(n - \Theta(\sqrt{n}\log^{3/4} n))/2 + \Theta(\sqrt{n}\log^{3/4} n) = n/2 + \Theta(\sqrt{n}\log^{3/4} n)$.
Average-case Analysis of Best Fit

Number of unmatched point by greedy is expected to be $\Theta(\sqrt{n} \log^{3/4} n)$.

So, the number of bins in Almost Best Fit (ABF) is expected to be $(n - \Theta(\sqrt{n} \log^{3/4} n))/2 + \Theta(\sqrt{n} \log^{3/4} n) = n/2 + \Theta(\sqrt{n} \log^{3/4} n)$.

The cost of Best Fit is at most $n/2 + \Theta(\sqrt{n} \log^{3/4} n)$ for a sequence of length n on expectation.
Number of unmatched point by greedy is expected to be $\Theta(\sqrt{n \log^{3/4} n})$.

So, the number of bins in Almost Best Fit (ABF) is expected to be

$$(n - \Theta(\sqrt{n \log^{3/4} n}))/2 + \Theta(\sqrt{n \log^{3/4} n}) = n/2 + \Theta(\sqrt{n \log^{3/4} n}).$$

The cost of Best Fit is at most $n/2 + \Theta(\sqrt{n \log^{3/4} n})$ for a sequence of length n on expectation.

The cost of OPT is expected to be at least $n/2$ (since half items are expected to be larger than 0.5).
Average-case Analysis of Best Fit

Number of unmatched point by greedy is expected to be
\[\Theta(\sqrt{n} \log^{3/4} n) \].

So, the number of bins in Almost Best Fit (ABF) is expected to be
\[(n - \Theta(\sqrt{n} \log^{3/4} n))/2 + \Theta(\sqrt{n} \log^{3/4} n) = n/2 + \Theta(\sqrt{n} \log^{3/4} n) \].

The cost of Best Fit is at most \(n/2 + \Theta(\sqrt{n} \log^{3/4} n) \) for a sequence of length \(n \) on expectation.

The cost of OPT is expected to be at least \(n/2 \) (since half items are expected to be larger than 0.5).

Average case ratio of ABF (and hence BF) is at most
\[\frac{n/2 + \Theta(\sqrt{n} \log^{3/4} n)}{n/2} \approx 1 \] for large values of \(n \).
Average-case Analysis of Best Fit

Average-case analysis of Best Fit

- Number of unmatched point by greedy is expected to be $\Theta(\sqrt{n}\log^{3/4} n)$.
- So, the number of bins in Almost Best Fit (ABF) is expected to be $(n - \Theta(\sqrt{n}\log^{3/4} n))/2 + \Theta(\sqrt{n}\log^{3/4} n) = n/2 + \Theta(\sqrt{n}\log^{3/4} n)$.
- The cost of Best Fit is at most $n/2 + \Theta(\sqrt{n}\log^{3/4} n)$ for a sequence of length n on expectation.
- The cost of OPT is expected to be at least $n/2$ (since half items are expected to be larger than 0.5).
- Average case ratio of ABF (and hence BF) is at most $\frac{n/2 + \Theta(\sqrt{n}\log^{3/4} n)}{n/2} \approx 1$ for large values of n.
- Expected waste of ABF (and hence BF) is at most $E(ABF(\sigma) - \text{OPT}(\sigma)) = n/2 + \Theta(\sqrt{n}\log^{3/4} n) - n/2 = \Theta(\sqrt{n}\log^{3/4} n)$.
The average-case analysis for Harmonic Match is similar to Best Fit; we repeat the same analysis for each class separately.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Competitive Ratio</th>
<th>Average Ratio</th>
<th>Expected waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Fit (NF)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best Fit (BF)</td>
<td>1.7 Johnso73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Fit (FF)</td>
<td>1.7 Johnso73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The average-case analysis for Harmonic Match is similar to Best Fit; we repeat the same analysis for each class separately.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Competitive Ratio</th>
<th>Average Ratio</th>
<th>Expected waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Fit ((N_F))</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best Fit ((B_F))</td>
<td>1.7 Johnso73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Fit ((F_F))</td>
<td>1.7 Johnso73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refined First Fit</td>
<td>1.6 Yao80A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonic ((H_A))</td>
<td>(T_\infty \approx 1.691) LeeLee85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[T_\infty \approx 1.691 \]
Average-case Analysis of Best Fit

The average-case analysis for Harmonic Match is similar to Best Fit; we repeat the same analysis for each class separately.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Competitive Ratio</th>
<th>Average Ratio</th>
<th>Expected waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Fit (NF)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best Fit (BF)</td>
<td>1.7 Johnso73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Fit (FF)</td>
<td>1.7 Johnso73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refined First Fit</td>
<td>1.6 Yao80A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonic (HA)</td>
<td>$T_\infty \approx 1.691$ LeeLee85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refined Harmonic</td>
<td>1.635 LeeLee85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Harmonic</td>
<td>1.615 RamBrowLeeLee89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonic++</td>
<td>1.5888 Seid02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme Harmonic</td>
<td>1.5817 Van15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Average-case Analysis of Best Fit

The average-case analysis for Harmonic Match is similar to Best Fit; we repeat the same analysis for each class separately.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Competitive Ratio</th>
<th>Average Ratio</th>
<th>Expected waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Fit (NF)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best Fit (BF)</td>
<td>1.7 Johnso73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Fit (FF)</td>
<td>1.7 Johnso73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refined First Fit</td>
<td>1.6 Yao80A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonic (HA)</td>
<td>$T_\infty \approx 1.691$ LeeLee85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refined Harmonic</td>
<td>1.635 LeeLee85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Harmonic</td>
<td>1.615 RamBrowLeeLee89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonic++</td>
<td>1.5888 Seid02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme Harmonic</td>
<td>1.5817 Van15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The average-case analysis for Harmonic Match is similar to Best Fit; we repeat the same analysis for each class separately.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Competitive Ratio</th>
<th>Average Ratio</th>
<th>Expected waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Fit ((N_F))</td>
<td>2</td>
<td>1.3 CoHoSY80</td>
<td>(\Omega(n))</td>
</tr>
<tr>
<td>Best Fit ((B_F))</td>
<td>1.7 Johnso73</td>
<td>1 BeJLMM84</td>
<td>(\Theta(\sqrt{n} \log^{3/4} n)) Shor86</td>
</tr>
<tr>
<td>First Fit ((F_F))</td>
<td>1.7 Johnso73</td>
<td>1 LeiSho89</td>
<td>(\Theta(n^{2/3})) Shor86 CoJoSW95</td>
</tr>
<tr>
<td>Refined First Fit</td>
<td>1.6 Yao80A</td>
<td>> 1</td>
<td>(\Omega(n))</td>
</tr>
<tr>
<td>Harmonic ((H_A))</td>
<td>(T_\infty \approx 1.691) LeeLee85</td>
<td>1.2899 LeeLee85</td>
<td>(\Omega(n))</td>
</tr>
<tr>
<td>Refined Harmonic</td>
<td>1.635 LeeLee85</td>
<td>1.2824 GuChXu02</td>
<td>(\Omega(n))</td>
</tr>
<tr>
<td>Modified Harmonic</td>
<td>1.615</td>
<td>1.189</td>
<td>(\Omega(n))</td>
</tr>
<tr>
<td>RamBrowLeeLee89</td>
<td></td>
<td></td>
<td>(\Omega(n))</td>
</tr>
<tr>
<td>Harmonic++</td>
<td>1.5888 Seid02</td>
<td>> 1</td>
<td>(\Omega(n))</td>
</tr>
<tr>
<td>Extreme Harmonic</td>
<td>1.5817</td>
<td>> 1</td>
<td>(\Omega(n))</td>
</tr>
<tr>
<td>Van15</td>
<td></td>
<td></td>
<td>(\Omega(n))</td>
</tr>
</tbody>
</table>
Experimental Evaluation

- Experimental average-case performance of online algorithms for different distributions.
In practical scenarios, we should have an eye on both worst-case and average-case performance.
In practical scenarios, we should have an eye on both worst-case and average-case performance.

Harmonic algorithms do well in the worst-case (competitive ratio) but have poor average-case performance.
Discussion

- In practical scenarios, we should have an eye on both worst-case and average-case performance.

- Harmonic algorithms do well in the worst-case (competitive ratio) but have poor average-case performance.

- Another family of algorithms, e.g., Sum-of-Square algorithm, have a good average-case performance (better than Best Fit) but have a poor competitive ratio.
Discussion

- In practical scenarios, we should have an eye on both worst-case and average-case performance.

- Harmonic algorithms do well in the worst-case (competitive ratio) but have poor average-case performance.

- Another family of algorithms, e.g., Sum-of-Square algorithm, have a good average-case performance (better than Best Fit) but have a poor competitive ratio.

- There is not necessarily a trade-off between worst-case and average-case performance in bin packing.
In practical scenarios, we should have an eye on both worst-case and average-case performance.

Harmonic algorithms do well in the worst-case (competitive ratio) but have poor average-case performance.

Another family of algorithms, e.g., Sum-of-Square algorithm, have a good average-case performance (better than Best Fit) but have a poor competitive ratio.

There is not necessarily a trade-off between worst-case and average-case performance in bin packing.

We can devise algorithms that are good in both senses → Harmonic-match.
Fault-tolerant Server Consolidation

An application of Bin Packing:
Fault-tolerant Server Consolidation

"As far as we can tell, the system went down because someone stepped on a crack in the sidewalk."

image: Andrew Toos via CartoonStock
Fault-tolerant Bin Packing
(Server Consolidation in the Cloud)

- Bins represent servers and items are clients (e.g., databases tenants on Amazon or movies on NetFlix).
- Server might fail and it should not interrupt the service (clients should always be available).
Fault-tolerant Server Consolidation

Fault-tolerant Bin Packing

Server Consolidation in the Cloud

- Bins represent **servers** and items are **clients** (e.g., databases tenants on Amazon or movies on NetFlix).

- Server might fail and it should not interrupt the service (clients be should always available).

Given a sequence of items, place two replicas of each item in different servers

- Each replica of an item with **load** x has a load of $x/2$.
- Think of load as the number of people who watch a NetFlix movie; so each replica requires half bandwidth.
Fault-tolerant Server Consolidation

Fault-tolerant Bin Packing
(Server Consolidation in the Cloud)

- Bins represent servers and items are clients (e.g., databases tenants on Amazon or movies on NetFlix).
- Server might fail and it should not interrupt the service (clients always available).
- Given a sequence of items, place two replicas of each item in different servers
 - Each replica of an item with load x has a load of $x/2$.
 - Think of load as the number of people who watch a Netflix movie; so each replica requires half bandwidth.
- In case of a server’s failure, the load of each replica is redirected to the server that hosts its partner.
Valid Solutions

- Consider sequence
 \[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]
Consider sequence \(\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle \).

A valid packing:
Valid Solutions

- Consider sequence
 \[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]
- A valid packing:
Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]
A valid packing:
Valid Solutions

- Consider sequence
 \[a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \].
- A valid packing:
Valid Solutions

- Consider sequence
 \[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle.\]
- A valid packing:
Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]

A valid packing:
Consider sequence \(\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle \).

A valid packing:
Valid Solutions

- Consider sequence \(\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle \).
- A valid packing:
Valid Solutions

- Consider sequence
 \[
 \langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle.
 \]

- An invalid packing:
Valid Solutions

Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]

An invalid packing:
Consider sequence \[
\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle.
\]

An invalid packing:
Consider two types of replicas (blue and red), and apply Best Fit for each type separately.

Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle.\]
Mirroring Algorithms

Consider two types of replicas (blue and red), and apply Best Fit for each type separately.

Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]
Fault-tolerant Server Consolidation

Mirroring Algorithms

- Consider two types of replicas (blue and red), and apply Best Fit for each type separately.

- Consider sequence

\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]
Fault-tolerant Server Consolidation

Mirroring Algorithms

- Consider two types of replicas (blue and red), and apply Best Fit for each type separately.

- Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]
Consider two types of replicas (blue and red), and apply Best Fit for each type separately.

Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4\rangle.\]
Consider two types of replicas (blue and red), and apply Best Fit for each type separately.

Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle.\]
Fault-tolerant Server Consolidation

Mirroring Algorithms

- Consider two types of replicas (blue and red), and apply Best Fit for each type separately.

- Consider sequence
 \[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]
Fault-tolerant Server Consolidation

Mirroring Algorithms

- Consider two types of replicas (blue and red), and apply Best Fit for each type separately
- The level of a bin is never more than 0.5 (otherwise there will be an overflow in case of a bin failure)
- Consider sequence
 \[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]
Mirroring algorithms are not better than 2-competitive.

Consider sequence $\langle 2\epsilon_1, 2\epsilon_2, \ldots, 2\epsilon_n \rangle$.

OPT can place all items so that all bins are almost full.

- Each two bins share at most one item!
Like Harmonic, define *classes* for replicas.

- \((\frac{1}{3}, \frac{1}{2}], \left(\frac{1}{4}, \frac{1}{3}\right], \ldots, \left(\frac{1}{K}, \frac{1}{K-1}\right], (0, \frac{1}{K}]\) (E.g., \(K = 30\)).

Treat members of each class separately.
Horizontal Harmonic (HH) Algorithm

Like Harmonic, define classes for replicas.

\((\frac{1}{3}, \frac{1}{2}], (\frac{1}{4}, \frac{1}{3}], \ldots, (\frac{1}{K}, \frac{1}{K-1}], (0, \frac{1}{K}] \) (E.g., \(K = 30\)).

Treat members of each class separately.

- No two bins share more than one replica.
Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle\) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).
Horizontal Harmonic (HH) Algorithm

Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).

Place \(i \) blue replicas of class \(i < K \) in the same bin.
Consider sequence \(\langle a_1, a_2, \ldots a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).

Place \(i \) blue replicas of class \(i < K \) in the same bin.

Place red replicas whose partners are in the same bin in different bins.

This ensures a valid packing.
Horizontal Harmonic (HH) Algorithm

Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).

- Place \(i \) blue replicas of class \(i < K \) in the same bin.

- Place red replicas whose partners are in the same bin in different bins.

 - This ensures a valid packing.

\[
\begin{array}{ccc}
\text{ } & \text{ } & \\
\end{array}
\]

\[a_1 \]
Consider sequence $\langle a_1, a_2, \ldots, a_m \rangle$ of replicas of the same class (E.g., for class 3, replicas lie in the range $(1/5, 1/4]$).

Place i blue replicas of class $i < K$ in the same bin.

Place red replicas whose partners are in the same bin in different bins.

- This ensures a valid packing.
Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4] \)).

Place \(i \) blue replicas of class \(i < K \) in the same bin.

Place red replicas whose partners are in the same bin in different bins.

This ensures a valid packing.
Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).

Place \(i \) blue replicas of class \(i < K \) in the same bin.

Place red replicas whose partners are in the same bin in different bins.

This ensures a valid packing.
Consider sequence $\langle a_1, a_2, \ldots, a_m \rangle$ of replicas of the same class (E.g., for class 3, replicas lie in the range $(1/5, 1/4]$).

Place i blue replicas of class $i < K$ in the same bin.

Place red replicas whose partners are in the same bin in different bins.

This ensures a valid packing.
Consider sequence \(\langle a_1, a_2, \ldots a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).

Place \(i \) blue replicas of class \(i < K \) in the same bin.

Place red replicas whose partners are in the same bin in different bins.

This ensures a valid packing.
Horizontal Harmonic (HH) Algorithm

Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4] \)).

- Place \(i \) blue replicas of class \(i < K \) in the same bin.
- Place red replicas whose partners are in the same bin in different bins.
 - This ensures a valid packing.
Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).

- Place \(i \) blue replicas of class \(i < K \) in the same bin.
- Place red replicas whose partners are in the same bin in different bins.
- This ensures a valid packing.
Consider sequence $\langle a_1, a_2, \ldots, a_m \rangle$ of replicas of the same class (E.g., for class 3, replicas lie in the range $[1/5, 1/4]$).

Place i blue replicas of class $i < K$ in the same bin. Place red replicas whose partners are in the same bin in different bins.

This ensures a valid packing.
Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).

Place \(i \) blue replicas of class \(i < K \) in the same bin.

Place red replicas whose partners are in the same bin in different bins.

This ensures a valid packing.
Real-world implementation of Horizontal-Harmonic shows promising performance (ongoing research).
Real-world implementation of Horizontal-Harmonic shows promising performance (ongoing research).

The algorithms works well in both worst-case and average-case.
Real-world implementation of Horizontal-Harmonic shows promising performance (ongoing research).

The algorithms work well in both worst-case and average-case.

In the next class, we use a weighting function to show Horizontal Harmonic has a competitive ratio of at most 1.59.