Review & Plan
Today’s plan

- Online bipartite matching (marriage problem)
- Review of the exam (how it will look)
- Concluding remarks
Online Bipartite Matching
(Marriage problem)
Online Matching

Online Bipartite Matching

Given a bipartite graph, create a matching of maximum size

Greedy algorithm: match with any vertex on the right if possible!
Online Matching

Online Bipartite Matching

Given a bipartite graph, create a matching of maximum size

In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one

- Upon arrival of vertex x, all edges connecting x to its neighbors on the left are revealed
- an online algorithm should match x with another vertex, if possible, without any information about future vertices

Greedy algorithm: match with any vertex on the right if possible!
Online Matching

Online Bipartite Matching

- Given a bipartite graph, create a matching of maximum size.
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one.
 - Upon arrival of vertex x, all edges connecting x to its neighbors on the left are revealed.
 - An online algorithm should match x with another vertex, if possible, without any information about future vertices.
- **Greedy algorithm**: match with any vertex on the right if possible!
Online Matching

Online Bipartite Matching

- Given a bipartite graph, create a matching of maximum size
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one
 - Upon arrival of vertex x, all edges connecting x to its neighbors on the left are revealed
 - An online algorithm should match x with another vertex, if possible, without any information about future vertices
- **Greedy algorithm**: match with any vertex on the right if possible!
Online Matching

Online Bipartite Matching

- Given a bipartite graph, create a matching of maximum size
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one
 - Upon arrival of vertex x, all edges connecting x to its neighbors on the left are revealed
 - an online algorithm should match x with another vertex, if possible, without any information about future vertices
- **Greedy algorithm**: match with any vertex on the right if possible!
Online Bipartite Matching

- Given a bipartite graph, create a matching of maximum size.
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one.
 - Upon arrival of vertex x, all edges connecting x to its neighbors on the left are revealed.
 - An online algorithm should match x with another vertex, if possible, without any information about future vertices.
- **Greedy algorithm**: match with any vertex on the right if possible!
Online Matching

Online Bipartite Matching

- Given a bipartite graph, create a matching of maximum size
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one
 - Upon arrival of vertex x, all edges connecting x to its neighbors on the left are revealed
 - An online algorithm should match x with another vertex, if possible, without any information about future vertices
- **Greedy algorithm**: match with any vertex on the right if possible!
Online Matching

Online Bipartite Matching

- Given a bipartite graph, create a matching of maximum size.
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one.
 - Upon arrival of vertex \(x \), all edges connecting \(x \) to its neighbors on the left are revealed.
 - An online algorithm should match \(x \) with another vertex, if possible, without any information about future vertices.
- **Greedy algorithm**: match with any vertex on the right if possible!
Online Matching

Online Bipartite Matching

- Given a bipartite graph, create a matching of maximum size
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one
 - Upon arrival of vertex \(x \), all edges connecting \(x \) to its neighbors on the left are revealed
 - An online algorithm should match \(x \) with another vertex, if possible, without any information about future vertices
- **Greedy algorithm**: match with any vertex on the right if possible!
Online Bipartite Matching

- Given a bipartite graph, create a matching of maximum size.
- In the online setting, vertices in one side of the graph are given, and vertices in the other side arrive one by one.
 - Upon arrival of vertex x, all edges connecting x to its neighbors on the left are revealed.
 - An online algorithm should match x with another vertex, if possible, without any information about future vertices.
- **Greedy algorithm**: match with any vertex on the right if possible!
In this example, OPT has a benefit of 4 (a perfect matching) while greedy has a benefit of 3!

Matching is a maximization problem: we would like to maximize the benefit instead of minimizing the cost.

Competitive ratio is often defined as the maximum value of

$$\frac{\text{Benefit(\text{OPT})}}{\text{benefit(Alg)}}$$

Theorem

Greedy has a competitive ratio of at most 2.
Greedy Bipartite Matching

- Greedy algorithm always creates a maximal matching
 - All neighbors of an unmatched vertex u are matched (otherwise greedy would have matched u with one of its neighbors).

Consider a bipartite graph with n vertices on the left. If X denote the number of vertices on left which are matched by Opt and unmatched by greedy, all neighbors of these vertices are matched by greedy.

Greedy matches $n - X$ vertices on the left.
Greedy matches at least X vertex on the right.

Size of greedy matching is at least $\max\{n - X, X\}$ and size of Opt matching is at most n.

Competitive ratio will be $\frac{n}{\max\{n - X, X\}} \leq \frac{n}{n/2} = 2$.

COMP 7720 - Online Algorithms Online Graph Problems & Goodbye Notes
Greedy Bipartite Matching

- Greedy algorithm always creates a maximal matching
 - All neighbors of an unmatched vertex \(u \) are matched (otherwise greedy would have matched \(u \) with one of its neighbors).

- Consider a bipartite graph with \(n \) vertices on the left.

- If \(X \) denote the number of vertices on left which are matched by \(\text{OPT} \) and unmatched by greedy, all neighbours of these vertices are matched by greedy
 - Greedy matches \(n - X \) vertices on the left
 - Greedy matches at least \(X \) vertex on the right

- Size of greedy matching is at least \(\max\{n - X, X\} \) and size of \(\text{OPT} \) matching is at most \(n \)
 - Competitive ratio will be
 \[
 \frac{n}{\max\{n - X, X\}} \leq \frac{n}{n/2} = 2
 \]
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed c.r. ≤ 2).
- For the lower bound, consider the following example:
 - Greedy matches $n/2$ vertices while OPT matches n vertices
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed c.r. ≤ 2).
- For the lower bound, consider the following example:
 - Greedy matches $n/2$ vertices while OPT matches n vertices
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed $c.r. \leq 2$).
- For the lower bound, consider the following example:
 - Greedy matches $n/2$ vertices while OPT matches n vertices

![Graph Example](image)
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed c.r. \(\leq 2 \)).
- For the lower bound, consider the following example:
 - Greedy matches \(n/2 \) vertices while \(\text{OPT} \) matches \(n \) vertices
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed c.r. \(\leq 2 \)).
- For the lower bound, consider the following example:
 - Greedy matches \(n/2 \) vertices while \(\text{OPT} \) matches \(n \) vertices
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed $\text{c.r.} \leq 2$).
- For the lower bound, consider the following example:
 - Greedy matches $n/2$ vertices while OPT matches n vertices

![Graph Example](image-url)
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed c.r. ≤ 2).
- For the lower bound, consider the following example:
 - Greedy matches $n/2$ vertices while OPT matches n vertices
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed c.r. \(\leq 2 \)).
- For the lower bound, consider the following example:
 - Greedy matches \(\frac{n}{2} \) vertices while \(\text{OPT} \) matches \(n \) vertices
Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed c.r. \(\leq 2 \)).
- For the lower bound, consider the following example:
 - Greedy matches \(n/2 \) vertices while \(\text{OPT} \) matches \(n \) vertices
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed c.r. ≤ 2).
- For the lower bound, consider the following example:
 - Greedy matches $n/2$ vertices while OPT matches n vertices
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed $\text{c.r.} \leq 2$).
- For the lower bound, consider the following example:
 - Greedy matches $n/2$ vertices while OPT matches n vertices
Greedy Bipartite Matching

Theorem

Greedy has a competitive ratio of at most 2.

- We proved an upper bound before (i.e., we showed $c.r. \leq 2$).
- For the lower bound, consider the following example:
 - Greedy matches $n/2$ vertices while OPT matches n vertices
Theorem

No deterministic online algorithm has a competitive ratio better than 2.

- Proof similar to the case of Greedy.
- So, Greedy is the best deterministic algorithm.
- A randomized algorithm which chooses random match has also a competitive ratio of 2 (is it good?).
Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation
Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex \(u \) on right:
 - Let \(N(u) \) be the set of unmatched neighbors of \(u \)
 - If \(N(u) \neq 0 \), match \(u \) to the vertex \(v \in N(u) \) with minimum index in the permutation

3
5
1
6
4
2
Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation
Online Matching

Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation
Online Matching

Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation

![Diagram of a bipartite graph with matching edges]
Online Matching

Deterministic Bipartite Matching

Rank Algorithm:
- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation
Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left.
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u.
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation.
Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation
Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex \(u \) on right:
 - Let \(N(u) \) be the set of unmatched neighbors of \(u \)
 - If \(N(u) \neq 0 \), match \(u \) to the vertex \(v \in N(u) \) with minimum index in the permutation
Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation
Online Matching

Deterministic Bipartite Matching

Rank Algorithm:

- Initially, choose a random permutation of all vertices on left
- Upon arrival of a vertex u on right:
 - Let $N(u)$ be the set of unmatched neighbors of u
 - If $N(u) \neq 0$, match u to the vertex $v \in N(u)$ with minimum index in the permutation

Theorem

Rank has a competitive ratio of $\frac{e}{e-1} \approx 1.58$
Greedy algorithm has a competitive ratio of 2 and it is the best that a deterministic algorithm can achieve.

Rank is a simple randomized algorithm with competitive ratio of \(\frac{e}{e - 1} \)

- It is known that no randomized, online algorithm can achieve a competitive ratio better than \(\frac{e}{e - 1} \).
• Greedy algorithm has a competitive ratio of 2 and it is the best that a deterministic algorithm can achieve

• Rank is a simple randomized algorithm with competitive ratio of $e/(e-1)$
 - It is known that no randomized, online algorithm can achieve a competitive ratio better than $e/(e-1)$.