Review & Plan
When you are searching for an unknown value/position, you can use doubling (or jumping by other factors) to guess the distance/cost that should be taken in the next step.

This often results in competitive algorithms.
When you are searching for an unknown value/position, you can use doubling (or jumping by other factors) to guess the distance/cost that should be taken in the next step.

- This often results in competitive algorithms.

In path cow problem, we double the distance moved in each step.

- Similar technique can be used to achieve competitive algorithms for many search problems.
Today’s objectives

- Online Bidding Problem
 - Upper and lower bound for competitive ratio of deterministic algorithms
 - An optimal randomized algorithm

- Online Clustering Problem
Online Bidding Problem
Online Bidding Problem

Problem Definition

- We face an unknown target u
- A player (online algorithm) submits a sequence d_0, \ldots, d_k of bids until one is greater than or equal to u.
 - we have $d_0 < d_1 < \ldots < d_{k-1} < u \leq d_k$.

Magical betting formula:

$$r = \max \{ u, k \} \left(d_0 + d_1 + \ldots + d_k \right)$$
Online Bidding Problem

Problem Definition

- We face an unknown target \(u \)
- A player (online algorithm) submits a sequence \(d_0, \ldots, d_k \) of bids until one is greater than or equal to \(u \).
 - we have \(d_0 < d_1 < \ldots < d_{k-1} < u \leq d_k \).
- The competitive ratio of the algorithm is?
Online Bidding Problem

Problem Definition

- We face an unknown target u
- A player (online algorithm) submits a sequence d_0, \ldots, d_k of bids until one is greater than or equal to u.
 - we have $d_0 < d_1 < \ldots < d_{k-1} < u \leq d_k$.
- The competitive ratio of the algorithm is?

Magical betting formula

$$c.r. = \max_{u,k} \left\{ \frac{d_0 + d_1 + \ldots + d_k}{u} \right\}$$
Online Bidding Problem

Doubling algorithm

- Begin with a bid of cost $d_0 = 1$ and ‘jump’ by a factor of 2 for each subsequent bid
 - we have $d_0 = 1$, $d_1 = 2$, \ldots, $d_i = 2^i$.
- What is the competitive ratio?
Assume we stop after guessing \(k \) items.

The cost of the algorithm is \(1 + 2 + \ldots + 2^k = 2^{k+1} - 1 \).

The cost of \(\text{OPT} \) is \(u \) where \(2^{k-1} < u \leq 2^k \).

What is the worse-case value of \(u \)?

- If you are adversary, where do you select \(u \) to be?
- The worse case is when \(u = 2^{k-1} + \epsilon \).

The competitive ratio is \(\frac{1+2+\ldots+2^k}{u} = \frac{2^{k+1} - 1}{2^{k-1} + \epsilon} \approx 4 \).
Online Bidding Problem

Can we do better?

Theorem

The doubling algorithm has a competitive ratio of 4.

- Is there any deterministic algorithm with a better competitive ratio?
Online Bidding Problem

Can we do better?

Theorem

The doubling algorithm has a competitive ratio of 4.

Is there any deterministic algorithm with a better competitive ratio?

- The answer is No

Theorem

There is no deterministic algorithm for online bidding with a c.r. better than 4.
Lower bound

Assume there is an algorithm with a competitive ratio $\alpha < 4$.

- Let $s_i = d_0 + d_1 + \ldots + d_i$ (the cost after i steps).
- Let $y_i = \frac{s_{i+1}}{s_i}$, (e.g., for doubling algorithm y_i approaches to 2 for large values of i.)
Assume there is an algorithm with a competitive ratio $\alpha < 4$.

- Let $s_i = d_0 + d_1 + \ldots + d_i$ (the cost after i steps).
- Let $y_i = \frac{s_{i+1}}{s_i}$, (e.g., for doubling algorithm y_i approaches to 2 for large values of i.)

Since c.r. is at most α, we have $\frac{s_{n+1}}{d_n} \leq \alpha$ for large values of n.

$$s_{n+1} \leq \alpha d_n \implies \frac{s_{n+1}}{s_n} \leq \alpha \frac{d_n}{s_n} = \alpha \frac{s_n - s_{n-1}}{s_n} \implies y_n \leq (1 - \frac{1}{y_{n-1}})\alpha$$
Online Bidding Problem

Lower bound

- Assume there is an algorithm with a competitive ratio \(\alpha < 4 \).
 - Let \(s_i = d_0 + d_1 + \ldots + d_i \) (the cost after \(i \) steps).
 - Let \(y_i = \frac{s_{i+1}}{s_i} \), (e.g., for doubling algorithm \(y_i \) approaches to 2 for large values of \(i \)).

- Since c.r. is at most \(\alpha \), we have \(\frac{s_{n+1}}{d_n} \leq \alpha \) for large values of \(n \).

\[
 s_{n+1} \leq \alpha d_n \implies \frac{s_{n+1}}{s_n} \leq \alpha \frac{d_n}{s_n} = \alpha \frac{s_n - s_{n-1}}{s_n} \implies y_n \leq \left(1 - \frac{1}{y_{n-1}}\right)\alpha
\]

- For any positive value of \(x \), we have \((x - 2)^2 = x^2 - 4x + 4 \geq 0 \), i.e., \(1 - 1/x \leq x/4 \). So, plugging \(x = y_{n-1} \) we get \(y_n \leq y_{n-1} \cdot \alpha/4 \).
 - Since \(\alpha < 4 \), in each step, the value of \(y_n \) is decreased by a fraction.
Lower bound

- Assume there is an algorithm with a competitive ratio $\alpha < 4$.
 - Let $s_i = d_0 + d_1 + \ldots + d_i$ (the cost after i steps).
 - Let $y_i = \frac{s_{i+1}}{s_i}$, (e.g., for doubling algorithm y_i approaches to 2 for large values of i.)

- Since c.r. is at most α, we have $\frac{s_{n+1}}{d_n} \leq \alpha$ for large values of n.

$$s_{n+1} \leq \alpha d_n \implies \frac{s_{n+1}}{s_n} \leq \alpha \frac{d_n}{s_n} = \alpha \frac{s_n - s_{n-1}}{s_n} \implies y_n \leq \left(1 - \frac{1}{y_{n-1}}\right)\alpha$$

- For any positive value of x, we have $(x - 2)^2 = x^2 - 4x + 4 \geq 0$, i.e., $1 - 1/x \leq x/4$. So, plugging $x = y_{n-1}$ we get $y_n \leq y_{n-1} \cdot \alpha/4$.
 - Since $\alpha < 4$, in each step, the value of y_n is decreased by a fraction.

- After a sufficiently large number of steps, we will have $y_n < 1$ which implies $\frac{s_n}{s_{n-1}} < 1$, i.e., $s_n < s_{n-1}$.
 - It contradicts the definition of s_n, so the initial assumption of $\alpha < 4$ does not hold!
The doubling algorithm has a c.r. of 4 for the online bidding problem.

No deterministic online algorithm can do better!
Theorem

The doubling algorithm has a c.r. of 4 for the online bidding problem.

No deterministic online algorithm can do better!

- What about a *randomized* algorithm?
Randomized Online Bidding

- The algorithm selects X as a random number in the range $U[0, 1)$.
- The bids of the algorithm are

 \[d_0 = e^X, \quad d_1 = e^{X+1}, \quad d_2 = e^{X+2}, \ldots, \quad d_{k-1} = e^{X+k-1}, \quad d_k = e^{X+k}. \]
Online Bidding Problem

Randomized Online Bidding

- The algorithm selects X as a random number in the range $U[0, 1)$.
- The bids of the algorithm are $d_0 = e^X, d_1 = e^{X+1}, d_2 = e^{X+2}, \ldots, d_{k-1} = e^{X+k-1}, d_k = e^{X+k}$.
- What is the *expected* value for $J = d_k/u$?
Online Bidding Problem

Randomized Online Bidding

- The algorithm selects X as a random number in the range $U[0, 1)$.
- The bids of the algorithm are
 $$d_0 = e^X, \ d_1 = e^{X+1}, \ d_2 = e^{X+2}, \ldots, \ d_{k-1} = e^{X+k-1}, \ d_k = e^{X+k}.$$
- What is the **expected** value for $J = d_k/u$?
 - Recall the **worst-case** value of d_k/u for doubling algorithm was 2.

What is the expected value for $J = d_k/u$?
The algorithm selects X as a random number in the range $U[0, 1)$.

The bids of the algorithm are

$$d_0 = e^X, \; d_1 = e^{X+1}, \; d_2 = e^{X+2}, \ldots, \; d_{k-1} = e^{X+k-1}, \; d_k = e^{X+k}.$$

What is the expected value for $J = d_k/u$?

- Recall the worst-case value of d_k/u for doubling algorithm was 2.

Assume $u = e^p$, so we have: $u = e^p \leq e^{X+k} < e^{p+1}$
The algorithm selects X as a random number in the range $U[0, 1)$.

The bids of the algorithm are

- $d_0 = e^X$,
- $d_1 = e^{X+1}$,
- $d_2 = e^{X+2}$,
- \ldots,
- $d_{k-1} = e^{X+k-1}$,
- $d_k = e^{X+k}$.

What is the expected value for $J = d_k/u$?

- Recall the worst-case value of d_k/u for doubling algorithm was 2.
- Assume $u = e^p$, so we have: $u = e^p \leq e^{X+k} < e^{p+1}$

- So, $p \leq X + k < p + 1$.
- $X + k - p$ is a uniformly distributed random variable in $U[0, 1)$.
Online Bidding Problem

Randomized Online Bidding

- The algorithm selects X as a random number in the range $U[0, 1)$.

- The bids of the algorithm are

 $d_0 = e^X$, $d_1 = e^{X+1}$, $d_2 = e^{X+2}$, \ldots, $d_{k-1} = e^{X+k-1}$, $d_k = e^{X+k}$.

- What is the expected value for $J = d_k/u$?

 - Recall the worst-case value of d_k/u for the doubling algorithm was 2.

 - Assume $u = e^p$, so we have: $u = e^p \leq e^{X+k} < e^{p+1}$

 - So, $p \leq X + k < p + 1$.
 - $X + k - p$ is a uniformly distributed random variable in $U[0, 1)$.

- We have $J = d_k/u = e^{X+k}/e^p = e^{X+k-p}$, i.e., J is a random variable distributed as e^Y where Y is uniform in $[0, 1)$.

- The expected value of J is $\int_0^1 e^Y dY = e - 1 \approx 1.71$.

Note the improvement over the doubling algorithm!
The algorithm selects X as a random number in the range $U[0, 1)$.

The bids of the algorithm are

$$d_0 = e^X, d_1 = e^{X+1}, d_2 = e^{X+2}, \ldots, d_{k-1} = e^{X+k-1}, d_k = e^{X+k}.$$

What is the expected value for $J = d_k/u$?

Recall the worst-case value of d_k/u for doubling algorithm was 2.

Assume $u = e^p$, so we have:

$$u = e^p \leq e^{X+k} < e^{p+1}$$

So, $p \leq X + k < p + 1$.

$X + k - p$ is a uniformly distributed random variable in $U[0, 1)$.

We have $J = d_k/u = e^{x+k}/e^p = e^{x+k-p}$, i.e., J is a random variable distributed as e^Y where Y is uniform in $[0, 1)$.

The expected value of J is $\int_0^1 e^Y dY = e - 1 \approx 1.71$.

Note the improvement over doubling algorithm!
The bids of the algorithm are
\[d_0 = e^x, \quad d_1 = e^{x+1}, \ldots, \quad d_{k-1} = e^{x+k-1}, \quad d_k = e^{x+k}. \]

The expected value of \(J = d_k/u \) is \(e - 1 \).
Randomized Online Bidding (cntd.)

- The bids of the algorithm are
 \[d_0 = e^X, \quad d_1 = e^{X+1}, \ldots, \quad d_{k-1} = e^{X+k-1}, \quad d_k = e^{X+k}. \]

- The expected value of \(J = d_k/u \) is \(e - 1 \).

- The expected cost of the algorithm would be
 \[
e^X(1 + e + e^2 + \ldots + e^k) = e^X e^k (1 + 1/e + \ldots + 1/e^k) \\approx e^{X+k} e/(e-1) = d_k e/(e-1)
 \]

- The competitive ratio would be
 \[
 \frac{E[\text{cost(alg)}]}{E[\text{cost(opt)}]} = \frac{E[d_k e/(e-1)]}{u} = E\left[\frac{d_k}{u}\right] e/(e-1) = (e-1)e/(e-1) = e
 \]
Theorem

There is a randomized algorithm for online bidding which has c.r. of e.

Indeed, it is the best that a randomized algorithm can achieve.
Online Clustering Problem
Online Clustering Problem

Problem Definition

- Partition a set of points in the plane into k clusters

The diameter of a cluster is the maximum distance between any two points in the cluster.

The objective is to achieve a clustering with minimum diameter, i.e., a clustering in which the maximum diameter of clusters is minimized.
Problem Definition

- Partition a set of points in the plane into k clusters
- The diameter of a cluster is the maximum distance between any two points in the cluster
Online Clustering Problem

Problem Definition

- Partition a set of points in the plane into k clusters
- The **diameter** of a cluster is the maximum distance between any two points in the cluster
- The objective is to achieve a clustering with minimum diameter, i.e., a clustering in which the maximum diameter of clusters is minimized.

$k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!

$k = 3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!

$k = 3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to **merge clusters** but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to **merge clusters** but we cannot break them!

\(k = 3 \)
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to **merge clusters** but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to **merge clusters** but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot break them!
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to merge clusters but we cannot break them!

\[k = 3 \]
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot break them!
In the next class, we study a clustering algorithm which uses a bidding algorithm as a black box!