COMP 7720 - Online Algorithms

Online Clustering & List Update

Shahin Kamali

Lecture 4 - Sep. 18, 2018

University of Manitoba
Review & Plan
Today’s objectives

- Online Clustering problem:
 - How to reduce an online problem to another
- List Update problem
Online betting: a Review

- We face an unknown target u
- A player (online algorithm) submits a sequence d_0, \ldots, d_k of bids until one is greater than or equal to u.
 - The cost of the algorithm is $d_0 + d_1 + \ldots + d_k$
 - We have $d_0 < d_1 < \ldots < d_{k-1} < u \leq d_k$.

Magical betting formula:

$$c \cdot r \cdot e = \max u, k \{d_0 + d_1 + \ldots + d_k\}$$

When bids are 1, 2, ..., 2, the competitive ratio is 4, and it is the best that a deterministic algorithm can do.

If we select X randomly from $U[0, 1)$ and use bids $e^X, e^{X+1}, \ldots, e^{X+k}$, the competitive ratio becomes $e \approx 2^{7.1}$, and it is the best a randomized algorithm can do.
Online betting: a Review

- We face an unknown **target** \(u \)
- A player (online algorithm) submits a sequence \(d_0, \ldots, d_k \) of **bids** until one is greater than or equal to \(u \).
 - The cost of the algorithm is \(d_0 + d_1 + \ldots + d_k \)
 - We have \(d_0 < d_1 < \ldots < d_{k-1} < u \leq d_k \).

Magical betting formula

\[
c.r. = \max_{u,k} \{ \frac{d_0 + d_1 + \ldots + d_k}{u} \}
\]

- When bids are \(1, 2, \ldots, 2^i \), the competitive ratio is 4, and it is the best that a **deterministic** algorithm can do.
We face an unknown target u.

A player (online algorithm) submits a sequence d_0, \ldots, d_k of bids until one is greater than or equal to u.

- The cost of the algorithm is $d_0 + d_1 + \ldots + d_k$.
- We have $d_0 < d_1 < \ldots < d_{k-1} < u \leq d_k$.

Magical betting formula

$$c.r. = \max_{u,k} \left\{ \frac{d_0 + d_1 + \ldots + d_k}{u} \right\}$$

- When bids are $1, 2, \ldots, 2^i$, the competitive ratio is 4, and it is the best that a deterministic algorithm can do.

- If we select X randomly from $U[0, 1)$ and use bids $e^X, e^{X+1}, \ldots, e^{X+k}$, the competitive ratio becomes $e \approx 2.71$, and it is the best a randomized algorithm can do.
Online Clustering Problem
Online Clustering Problem

Problem Definition

- Partition a set of points in the plane into k clusters

The diameter of a cluster is the maximum distance between any two points. The objective is to achieve a clustering with minimum diameter.

The problem is NP-hard. (What does it mean?)
Online Clustering Problem

Problem Definition

- Partition a set of points in the plane into k clusters
- The **diameter** of a cluster is the maximum distance between any two points

- Assume $k = 3$
Online Clustering Problem

Problem Definition

- Partition a set of points in the plane into k clusters
- The diameter of a cluster is the maximum distance between any two points
- The objective is to achieve a clustering with minimum diameter.

- Assume $k = 3$
Online Clustering Problem

Problem Definition

- Partition a set of points in the plane into \(k \) clusters
- The **diameter** of a cluster is the maximum distance between any two points
- The objective is to achieve a clustering with minimum diameter.
- The problem is NP-hard (what does it mean?)
- Assume \(k = 3 \)
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot divide one.
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to \textit{merge clusters} but we cannot divide one.
- Assume \(k=3 \)
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume \(k=3 \)
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume \(k=3 \)
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume \(k=3 \)
Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into \(k \) clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume \(k=3 \)
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to merge clusters but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering

- The set of points appear in an online manner
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Online Clustering Problem

Online Clustering

- The set of points appear in an online manner.
- At each time, we should have a partitioning of the appeared nodes into k clusters.
- We are allowed to **merge clusters** but we cannot divide one.
- Assume $k=3$
Greedy Algorithm: a First Approach

- Place the first k points in k different clusters.
- Greedily place any incoming point into the closest cluster!
Greedy Algorithm: a First Approach

- Place the first \(k \) points in \(k \) different clusters.
- Greedily place any incoming point into the closest cluster!
- Is this algorithm competitive?
 - Assume the first \(k \) points are at distance at most 1 from each other and the next point is at distance \(d \) of closest point, where \(d \) is arbitrary large!
 - Competitive ratio becomes at least \(d \).

- A competitive online algorithm needs a mechanism to merge clusters!
Online Clustering Problem

Clustering Algorithm: a Better Approach

- The algorithms uses a sequence d_0, d_1, \ldots each associated with a phase.
- Each cluster is recognized by a center.
- At phase i, the distance between any pair of centers is more than d_i.
Assume we are at phase \(i \) and a new point \(p \) arrives:

- If distance of \(p \) to any center \(c_i \) is at most \(d_i \), add \(P \) to the cluster of \(c_i \).
- Else if there are fewer than \(k \) clusters, create a new one for \(P \).
- Otherwise, start phase \(i + 1 \)
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$.

![Diagram showing two points within a circle labeled d_0.]
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i+1$
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add p to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for p.
- Otherwise, start phase $i + 1$.
Assume we are at phase \(i \) and a new point \(p \) arrives:

- If distance of \(p \) to any center \(c_i \) is at most \(d_i \), add \(P \) to the cluster of \(c_i \).
- Else if there are fewer than \(k \) clusters, create a new one for \(P \).
- Otherwise, start phase \(i + 1 \).
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$.
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add p to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add p to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for p.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:
- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:
- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:
- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Assume we are at phase i and a new point p arrives:

- If distance of p to any center c_i is at most d_i, add P to the cluster of c_i.
- Else if there are fewer than k clusters, create a new one for P.
- Otherwise, start phase $i + 1$
Starting a New Phase

- Create a temporary \((k + 1)\)st cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Online Clustering Problem

Starting a New Phase

- Create a temporary $(k+1)$st cluster with point P.
- Process centers one by one: when processing center c_i, merge its cluster with any cluster whose center is within distance d_{i+1} from c_i.
 - If no merger occurred, go to the next phase.
Starting a New Phase

- Create a temporary \((k + 1)\)st cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Starting a New Phase

- Create a temporary \((k + 1)\)st cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Starting a New Phase

- Create a temporary \((k + 1)\)st cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Starting a New Phase

- Create a temporary \((k + 1)\)st cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Starting a New Phase

- Create a temporary \((k + 1)\)st cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Starting a New Phase

- Create a temporary \((k + 1)\)st cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Online Clustering Problem

Starting a New Phase

- Create a temporary \((k+1)^{st}\) cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Online Clustering Problem

Starting a New Phase

- Create a temporary \((k + 1)\)st cluster with point \(P\).
- Process centers one by one: when processing center \(c_i\), merge its cluster with any cluster whose center is within distance \(d_{i+1}\) from \(c_i\).
 - If no merger occurred, go to the next phase.
Assume we are at phase $i + 1$

At the beginning of phase $i + 1$, there has been $k + 1$ ‘centers’ (including temporary one)

- Their pairwise distance is at least d_i.

So, the cost of OPT is at least d_i (why?)

- There are $k + 1$ centers of pairwise distance at least d_i; two of them have to be in the same cluster in any solution; such cluster will have diameter at least d_i.
The radius of a cluster: max. distance of any point to the center
- Diameter is at most twice the radius.

When we merge other clusters to cluster C at the beginning of the phase, the maximum radius is increased by at most d_{i+1}.
- The diameter is increased by at most $2d_{i+1}$.
- The diameter of any cluster at phase $i+1$ is at most $2d_0 + 2d_1 + \ldots + 2d_{i+1}$.
At any phase $i + 1$, the cost of OPT is at least d_i and the cost of the algorithm is at most $2(d_0 + d_1 + \ldots + d_{i+1})$.

This is the online bidding problem! If we use doubling we get a competitive ratio of at most 8. Randomized algorithm gives a competitive ratio of at most $2e \approx 5.4$.

Testing
At any phase $i + 1$, the cost of OPT is at least d_i and the cost of the algorithm is at most $2(d_0 + d_1 + \ldots + d_{i+1})$.

The competitive ratio is at most $\frac{2(d_0 + d_1 + \ldots + d_{i+1})}{d_i}$.

How to set d_1, \ldots, d_{i+1} so that the above ratio is minimized? This is online bidding problem! If we use doubling we get a competitive ratio of at most 8. Randomized algorithm gives a competitive ratio of at most $2e \approx 5.4$.

12 / 23
At any phase $i + 1$, the cost of OPT is at least d_i and the cost of the algorithm is at most $2(d_0 + d_1 + \ldots + d_{i+1})$.

The competitive ratio is at most $\frac{2(d_0 + d_1 + \ldots + d_{i+1})}{d_i}$.

How to set d_1, \ldots, d_{i+1} so that the above ratio is minimized?

- This is online bidding problem!

If we use doubling we get a competitive ratio of at most 8.

Randomized algorithm gives a competitive ratio of at most $2e \approx 5.4$.
Online Clustering Problem

Concluding Remarks

Any c-competitive algorithm for online bidding can be used to solve the online clustering algorithm.

- The competitive ratio of such algorithm would be at most $2c$.
- We can get competitive ratios of at most 8 and $2e$ respectively with doubling and randomized algorithm.

Recall that the offline problem is NP-hard!
Concluding Remarks

- Any c-competitive algorithm for online bidding can be used to solve the online clustering algorithm.
 - The competitive ratio of such algorithm would be at most $2c$.
 - We can get competitive ratios of at most 8 and $2e$ respectively with doubling and randomized algorithm.

- Recall that the offline problem is NP-hard!
 - Without knowing the offline solution, we achieve online algorithms which guarantee they are no more than 8 (or $2e$) times worst that the optimal offline algorithm.
There are many variants of the clustering problem:

- Minimize the sum of diameters instead of maximum diameter.
- Minimize the number of clusters assuming the diameter cannot be more than a given value D.
- Consider a graph instead of plane!
 - Graph partitioning!

Potential topic for project: If you like geometry, consider variants settings for clustering (e.g., different objectives and different dimensions), specially under new models such as advice.
List Update Problem
Problem Statement

List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

\[
< d \ b \ b \ d \ c \ a \ c >
\]
Problem Statement

List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

\[<d\ b\ b\ d\ c\ a\ c> \]

\text{cost:} \quad 4

\[a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \]
The input is a set of requests to items in a list.

The cost of accessing an item in index i is i.

$< \text{d b b d c a c}>$

cost: $4+2$
The input is a set of requests to items in a list.

The cost of accessing an item in index \(i \) is \(i \).

\[
\langle d\ b\ b\ d\ c\ a\ c \rangle
\]

Cost: \(4 + 2 + 2 \)
Problem Statement

List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

\[<d\ b\ b\ d\ c\ a\ c\ > \]

\[\text{cost: } 4+2+2+4 \]
List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

$\langle \text{d b b d c a c} \rangle$

cost: $4 + 2 + 2 + 4 + 3$

```
  a  b  c  d  e
  ▶
```

$\langle \text{d b b d c a c} \rangle$

cost: $4 + 2 + 2 + 4 + 3$
Problem Statement

List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

$< d \ b \ b \ d \ c \ a \ c >$

cost: $4 + 2 + 2 + 4 + 3 + 1$
List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

$<d b b d c a c>$

Cost: $4+2+2+4+3+1+3 = 19$
Problem Statement

Introduction to List Update

- An instance of self-adjusting data structures.
- The structure adjusts itself based on the input queries.
An instance of **self-adjusting data structures**.

The structure adjusts itself based on the input queries.

List update was formulated in 1984 by Sleator and Tarjan

- This result of Sleator and Tarjan made online algorithms popular in the following two decades
- There are applications in data-compression!
Self-Adjusting Lists

• Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).
Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).

- Free exchanges: Move a requested item closer to the front without any cost.

< d b b d c a c >
cost: 4
Problem Statement

Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).
- Free exchanges: Move a requested item closer to the front without any cost.

\[<\text{d b b d c a c}> \]

Cost: 4
Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).
 - Free exchanges: Move a requested item closer to the front without any cost.
 - Paid exchanges: Swap positions of two consecutive items with a cost 1.

```plaintext
< d b b d c a c >
```

Cost: 4
Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).

- Free exchanges: Move a requested item closer to the front without any cost.
- Paid exchanges: Swap positions of two consecutive items with a cost 1.

\[
< d \ b \ b \ d \ c \ a \ c >
\]

\[\text{cost: } 4\]
In the offline version of the problem, you have access to the whole set at the beginning.

- The problem is NP-hard.
In the offline version of the problem, you have access to the whole set at the beginning.

- The problem is NP-hard.

In the online setting, the requests appear in an online, sequential manner.

- An online algorithm should reorder the list without looking at the future requests.
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[<d \ b \ b \ d \ c \ a \ c > \]

\[
\text{cost: } 4
\]
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
< \text{d b b d c a c} > \\
\text{cost: 4}
\]

```
 d -------- a -------- b -------- c -------- e
```
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
< \ d \ b \ b \ d \ c \ a \ c >
\]

Cost: 4 + 3
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

< d b b d c a c >

\[
\text{cost: } 4+3
\]
After each access, move the requested item to the front.

- It only uses free exchanges.

\[< d \ b \ b \ d \ c \ a \ c >\]

Cost: \(4 + 3 + 1\)
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
< \text{d} \text{b} \text{b} \text{d} \text{c} \text{a} \text{c} > \\
\text{cost: } 4+3+1+2
\]
Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

< d b b d c a c >

\[\text{cost: } 4 + 3 + 1 + 2 + 4 \]
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

< d b b d c a c >

\[\text{cost: } 4 + 3 + 1 + 2 + 4 + 4 \]
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
< \text{d b b d c a c} >
\]

\[
\text{cost: } 4+3+1+2+4+4+2
\]
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[<d\ b\ b\ d\ c\ a\ c> \]
\[\text{cost: } 4+3+1+2+4+4+2 \]
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

Do nothing if such an item y does not exist.

< d b b d c a c >

cost: 4
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

$< d\ b\ b\ d\ c\ a\ c >$

cost: 4+2
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

Do nothing if such an item y does not exist.

$< \text{d b b d c a c} >$

Cost: $4+2+2$
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

$< d \ b \ b \ d \ c \ a \ c >$

cost: $4+2+2$

![Diagram of a list with elements b, a, c, d, e and arrows indicating the structure of the list.]
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

$$< \text{d b b d c a c} >$$

cost: $4+2+2+4$
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

Do nothing if such an item y does not exist.

$< d \ b \ b \ d \ c \ a \ c >$

cost: $4+2+2+4$
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

$< d b b d c a c >$

Cost: $4+2+2+4+4$
After an access to \(x \), move \(x \) to the front of the first item \(y \) which has been requested at most once since the last access to \(x \).

- Do nothing if such an item \(y \) does not exist.

\[
<\ d \ b \ b \ d \ c \ a \ c >
\]

\[
\text{cost:} \quad 4 + 2 + 2 + 4 + 4 + 3
\]
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

Do nothing if such an item y does not exist.

$$<d\ b\ b\ d\ c\ a\ c>$$

Cost: $4+2+2+4+4+3+4$
Online Algorithms

After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

\[
< d \ b \ b \ d \ c \ a \ c >
\]

\text{cost:} \quad 4+2+2+4+4+3+4

\[
\begin{array}{cccccc}
c & b & d & a & e \\
\end{array}
\]
Optimal Static Algorithm

- Look at the sequence of requests, sort items by the frequency of their accesses.
 - The most accessed item will be at the beginning of the list.
Optimal Static Algorithm

- Look at the sequence of requests, sort items by the frequency of their accesses.
 - The most accessed item will be at the beginning of the list.
- The cost of the algorithm would be at most $nk/2$.
Lower Bound for Competitive Ratio

- Consider a **cruel** sequence in which the adversary always asks for the last item in the list!
- What will be the cost of the algorithm?
Consider a **cruel** sequence in which the adversary always asks for the last item in the list!

What will be the cost of the algorithm?

- It will be nk.

What is the cost of Opt?

We know the optimal static algorithm has a cost of $nk/2$. So the cost of Opt is no more than $nk/2$. The competitive ratio of any online list update algorithm is at least $nk/nk/2 = 2$.
Consider a **cruel** sequence in which the adversary always asks for the last item in the list!

What will be the cost of the algorithm?
- It will be nk.

What is the cost of OPT?
- We know the optimal static algorithm has a cost of $nk/2$.
- So the cost of OPT is no more than $nk/2$.
Consider a **cruel** sequence in which the adversary always asks for the last item in the list!

What will be the cost of the algorithm?

- It will be nk.

What is the cost of OPT?

- We know the optimal static algorithm has a cost of $nk/2$.
- So the cost of OPT is no more than $nk/2$.

The competitive ratio of any online list update algorithm is at least

$$\frac{nk}{nk/2} = 2.$$
In the next class, we learn that the competitive ratio of MTF is 2, i.e., it is the optimal deterministic algorithm for list update!
In the next class, we learn that the competitive ratio of MTF is 2, i.e., it is the optimal deterministic algorithm for list update!

We also learn about randomized list update algorithms.