COMP 7720 - Online Algorithms

Self-Adjusting Trees & Paging

Shahin Kamali

Lecture 7 - Sep. 27, 2017

University of Manitoba
Review & Plan
Today’s objectives

- Self-Adjusting Trees
 - Splay trees
- Paging Problem
Self-Adjusting Trees
The input is a set of *requests* to items in a list of length L

- The goal is to update the list to adjust it into patterns in the input.
- There is a lot of **locality** in the input sequence:
 \[
 \langle 2\ 2\ 2\ 2\ 2\ 1\ 1\ 3\ 3\ 3\ 3\ 3\ 3\ 1\ 1\ 2\ 2\ 2 \rangle
 \]
- **Move-To-Front** and **Timestamp** have competitive ratio of 2, and they are the best deterministic list-update algorithm
The input is a set of requests to items in a BST of size N.

- The goal is to update the tree to adjust it into patterns in the input.

- There is a lot of locality in the input sequence.

- Can we apply Move-To-Front for trees?
Splay Trees Idea

- When there is a request to item a, adjust the tree so that a becomes root in the new tree!
- Use tree rotations to ‘bubble up’ the accessed item.
- We say that we splay a to become root in the adjusted tree.
 - It is a natural extension of Move-To-Front to the lists.
Self-Adjusting Trees

Splay Trees Idea

- When there is a request to item \(a \), adjust the tree so that \(a \) becomes root in the new tree!

- Use tree rotations to ‘bubble up’ the accessed item.

- We say that we **splay** \(a \) to become root in the adjusted tree
 - It is a natural extension of Move-To-Front to the lists.
Consider accessed item a, its parent p and grand-parent g (if they exist).

Reorder a, p, and g so that a appears ‘above’ the other two

- If a is smallest/largest, p and g will be in one side of a.
- If a is in between, p and g will be on its left and right.
Self-Adjusting Trees

Splaying Rotations General Idea

- Consider accessed item a, its parent p and grand-parent g (if they exist).

- Reorder a, p, and g so that a appears ‘above’ the other two.
 - If a is smallest/largest, p and g will be in one side of a.
 - If a is in between, p and g will be on its left and right.

- After re-ordering a, p, and g, ‘place’ the following four subtrees in their appropriate position to save BST property:
 - the two subtrees of a
 - the sibling of a in the subtree of p
 - the sibling of p in the subtree of g
Self-Adjusting Trees

Splay Example

- E.g., Access $a = 12$
E.g., Access $a = 12$
E.g., Access $a = 12$
E.g., Access \(a = 12 \)
Self-Adjusting Trees

Splay Example

- E.g., Access $a = 12$
Splay Example

E.g., Access $a = 12$
E.g., Access $a = 12$
E.g., Access $a = 12$
Splay Example

E.g., Access \(a = 12 \)
Splay Example

E.g., Access $a = 12$
Splay Example

E.g., Access \(a = 12 \)
Self-Adjusting Trees

Splaying Cases (a bit more formal)

The accessed node \(a \) is either

- Root
- Child of the root
- Has both parent \(p \) and grandparent \(g \):
 - Zig-zig pattern: \(g \rightarrow p \rightarrow a \) is left-left or right-right
 - Zig-zag pattern: \(g \rightarrow p \rightarrow a \) is left-right or right-left
if \(x \) is root, do nothing!
When x is child of the root, do a single rotation to move it above its parent.

- It is called a zig operation.
When x is left-child (resp. right-child) of P and p is right-child (resp. left-child) of g, do a double rotation.

It is called a zig-zag operation.
Reverse the order of \(a, p, \text{and } g\).

It is called a **zig-zig** operation.
Splay Example

- E.g., Access \(a = 6 \)
Splay Example

- E.g., Access $a = 6$
E.g., Access $a = 6$
E.g., Access $a = 6$
Splay Example

E.g., Access $a = 4$
Splay Example

E.g., Access $a = 4$
Splay Example

E.g., Access $a = 4$
Splaying: Intuition

- The accessed node is moved to ‘front’ (i.e., is now root)
- Let \(b \) be a node on the access path from root to the accessed node \(a \). If \(b \) is at depth \(d \) before the splay, its at about depth \(d/2 \) after the splay.
 - ’Deeper nodes’ on the access path tend to move closer to the root
Splaying: Intuition

- The accessed node is moved to ‘front’ (i.e., is now root)
- Let b be a node on the access path from root to the accessed node a. If b is at depth d before the splay, its at about depth $d/2$ after the splay.
 - ’Deeper nodes’ on the access path tend to move closer to the root
- Splaying gets amortized $O(\log N)$ amortized time.
 - N is the number of nodes in the tree

![Tree Diagram]
BST-Update problem

So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.
So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.

BST-Update problem:
- The input is an online sequence of requests to items in a BST.
- Each probe for finding an item x has cost 1.
- On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.

Dynamic Optimality Conjecture: Splay tree is a competitive solution, i.e., it has a competitive ratio independent of the size N of tree and length n of sequence.

We know the competitive ratio of splay trees is $O(\log N)$. The best existing algorithm is provided by self-adjusting Tango Trees, and has a competitive ratio of $O(\log \log N)$.

COMP 7720 - Online Algorithms Self-Adjusting Trees & Paging
BST-Update problem

- So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.

- **BST-Update problem:**
 - The input is an online sequence of requests to items in a BST.
 - Each probe for finding an item x has cost 1.
 - On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.

- **Dynamic Optimality Conjecture:** Splay tree is a competitive solution, i.e., it has a competitive ratio independent of the size N of tree and length n of sequence.
 - We know the competitive ratio of splay trees is $O(\log N)$
BST-Update problem

- So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.

- **BST-Update problem:**
 - The input is an online sequence of requests to items in a BST.
 - Each probe for finding an item x has cost 1.
 - On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.

- **Dynamic Optimality Conjecture:** Splay tree is a competitive solution, i.e., it has a competitive ratio independent of the size N of tree and length n of sequence.
 - We know the competitive ratio of splay trees is $O(\log N)$
 - The best existing algorithm is provided by self-adjusting **Tango Trees**, and has a competitive ratio of $O(\log \log N)$
Write a survey of the self-adjusting data structures (other than linked lists).

- In particular, think of BSTs and other structures.
- For example, is there any self-adjusting hash table? what about self-adjusting skip lists?

Think about advice BST-Update algorithms with advice?

- How many bits are sufficient to achieve an optimal algorithm?
Paging Problem
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.

- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.

- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 0

\[\sigma = \]

\[\begin{array}{c|c|c|c}
\hline
\text{1} & \text{2} & \text{3} \\
\hline
\end{array} \]
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 1

\[
\sigma = a
\]

$\begin{array}{c}
a \\
\end{array}$
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 2

\[
\sigma = a \ b
\]

\[
\begin{array}{cc}
a & b \\
\end{array}
\]
There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

The input is an online sequence of requests to pages of size 1. To serve a request to page x, it should be in the cache. In case x is not in the cache, a fault of cost 1 has happened. The goal is to minimize the total number of faults.

To bring x to the cache, we might need to evict a page. A paging algorithm is defined through its eviction policy.

Cost (number of faults): 3

\[\sigma = a \ b \ c \]

| a | b | c |
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 3

$\sigma = a \ b \ c \ b$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 3

$$\sigma = a \ b \ c \ b \ a$$

| a | b | c |
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 4

$\sigma = a \ b \ c \ b \ a \ d$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>

COMP 7720 - Online Algorithms Self-Adjusting Trees & Paging
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 4

$\sigma = a \ b \ c \ b \ a \ d \ c$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size \(k \), and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page \(x \), it should be in the cache.
- In case \(x \) is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring \(x \) to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

<table>
<thead>
<tr>
<th>Cost (number of faults): 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma = a \ b \ c \ b \ a \ d \ c \ e)</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

COMP 7720 - Online Algorithms Self-Adjusting Trees & Paging

18 / 22
LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 5

\[\sigma = a \quad b \quad c \quad b \quad a \quad d \quad c \quad e \]
Least-Recently-Used (LRU)

- **LRU algorithm**: if eviction is necessary, evict the least recently used item.

 Cost (number of faults): 5

 \[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

 | a | e | c | d |
Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 6

\(\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Paging Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 6

σ = a b c b a d c e f

f e c d
Paging Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

| f | e | c | d |
Paging Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

Cost (number of faults): 7
Paging Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

| | e | b | c | d |
Paging Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

\[
\begin{array}{cccc}
e & b & c & d \\
\end{array}
\]
Paging Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 6

\[\sigma = a \, b \, c \, b \, a \, d \, c \, e \, f \]

\[
\begin{array}{cccc}
 e & f & c & d \\
\end{array}
\]
FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[
\begin{array}{cccc}
 e & f & c & d \\
\end{array}
\]
FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a\ b\ c\ b\ a\ d\ c\ e\ f\ a \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>f</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paging Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

- [a] [b] [c] [d]
Paging Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

\[
\begin{array}{cccc}
a & e & c & d \\
\end{array}
\]
Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \; b \; c \; b \; a \; d \; c \; e \; f \; a \; c \; d \; c \; f \; a \; b \; a \; e \]
Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]
Paging Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

| a | f | c | d |
Paging Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

| a | f | c | d |
Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

$\sigma = \text{a b c b a d c e f a c d c f a b a e}$

| a | f | c | d |
Theorem

Furthest-In-Future (FIF) is the optimal offline algorithm for paging.