Review & Plan
Today’s objectives

- Caching Problem
 - Optimal offline algorithm
 - Lower bound for deterministic algorithms
 - Marking algorithms & upper bounds
 - Randomized algorithms
 - Caching anomalies
Caching Problem
There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

- The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 0

$$\sigma = \begin{array}{|c|c|c|c|} \hline \\ \hline \end{array}$$
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache
 - In case x is not in the cache, a fault of cost 1 happens
 - In case x is in the cache, a hit of cost 0 happens
 - The goal is to minimize the total number of faults
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy

Cost (number of faults): 1

$$\sigma = a$$

<table>
<thead>
<tr>
<th>a</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

COMP 7720 - Online Algorithms Caching (Paging) Problem
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size \(k \), and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page \(x \), it should be in the cache.
 - In case \(x \) is not in the cache, a fault of cost 1 happens.
 - In case \(x \) is in the cache, a hit of cost 0 happens.
 - The goal is to minimize the total number of faults.
- To bring \(x \) to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 2

\[\sigma = \begin{bmatrix} a & b \end{bmatrix} \]
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache
 - In case x is not in the cache, a fault of cost 1 happens
 - In case x is in the cache, a hit of cost 0 happens
- The goal is to minimize the total number of faults
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy

Cost (number of faults): 3

$$\sigma = a \ b \ c$$

| a | b | c |
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size \(k \), and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.

- To serve a request to page \(x \), it should be in the cache.
 - In case \(x \) is not in the cache, a fault of cost 1 happens.
 - In case \(x \) is in the cache, a hit of cost 0 happens.
 - The goal is to minimize the total number of faults.

- To bring \(x \) to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

\[
\text{Cost (number of faults): } 3
\]
\[
\sigma = a \ b \ c \ b
\]

COMP 7720 - Online Algorithms
Caching (Paging) Problem
Caching Problem

Problem Definition

There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

- The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.

To bring x to the cache, we might need to evict a page.

- A caching algorithm is defined through its eviction policy.

Cost (number of faults): 3

$\sigma = a\ b\ c\ b\ a$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

- The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 4

\[\sigma = a \ b \ c \ b \ a \ d \]

| a | b | c | d |
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size \(k\), and a slow memory of unbounded size
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page \(x\), it should be in the cache
 - In case \(x\) is not in the cache, a fault of cost 1 happens
 - In case \(x\) is in the cache, a hit of cost 0 happens
 - The goal is to minimize the total number of faults
- To bring \(x\) to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy

Cost (number of faults): 4

\[\sigma = a \ b \ c \ b \ a \ d \ c \]

\[
\begin{array}{cccc}
a & b & c & d \\
\end{array}
\]
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 5

$\sigma = a \ b \ c \ b \ a \ d \ c \ e$

| a | b | c | d | e |
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache
 - In case x is not in the cache, a fault of cost 1 happens
 - In case x is in the cache, a hit of cost 0 happens
 - The goal is to minimize the total number of faults
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy

Cost (number of faults):

$$
\sigma = a\ b\ c\ b\ a\ d\ c\ e
$$

\[
\begin{array}{cccc}
 a & e & c & d \\
\end{array}
\]
LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]
Caching Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

| a | e | c | d |
LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

| a | e | c | d |
Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

\[\begin{array}{cccc}
 f & e & c & d \\
\end{array} \]
Least-Recently-Used (LRU)

- **LRU algorithm**: if eviction is necessary, evict the least recently used item.

 Cost (number of faults): 7

 \[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

 \[
 \begin{array}{cccc}
 f & e & c & d \\
 \end{array}
 \]
Caching Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 7

\[\sigma = a\ b\ c\ b\ a\ d\ c\ e\ f\ a \]

\[
\begin{array}{cccc}
f & e & c & a \\
\end{array}
\]
Caching Problem

First-In-First-Out (FIFO)

FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>

COMP 7720 - Online Algorithms Caching (Paging) Problem
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5

\(\sigma = a \ b \ c \ b \ a \ d \ c \ e \)

| e | b | c | d |
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

\[
\begin{array}{cccc}
e & b & c & d \\
\end{array}
\]
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

| e | f | c | d |
Caching Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

<table>
<thead>
<tr>
<th>e</th>
<th>f</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

| e | f | a | d |
FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

| a | b | c | d |
Caching Problem

Flash-When-Full (FWF)

FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 5

\[\sigma = a\ b\ c\ b\ a\ d\ c\ e \]

\[\begin{array}{c}
 e \\
 \hline
 \end{array} \]
Flash-When-Full (FWF)

FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

| e | f | | |
FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]
Flash-When-Full (FWF)

- FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[
\begin{array}{|c|c|}
\hline
e & f \\
\hline
\end{array}
\]
Caching Problem

Flash-When-Full (FWF)

- FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

| e | f | a |
Caching Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 5

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e$$

| a | b | c | d |
Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

| a | e | c | d |
Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[
\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e
\]

| a | e | c | d |
An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>f</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>

COMP 7720 - Online Algorithms Caching (Paging) Problem
An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>f</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b\ c\ b\ a\ d\ c\ e\ f\ a\ c\ d\ c\ f\ a\ b\ a\ e \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>f</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a\ b\ c\ b\ a\ d\ c\ e\ f\ a\ c\ d\ c\ f\ a\ b\ a\ e \]

```
  a   f   c   d
```
Caching Problem

Optimal Caching Algorithm

Theorem

Furthest-In-Future (FIF) is the optimal offline algorithm for Caching.

- Idea: we can modify any optimal algorithm Off to work similar to FIF without increasing its cost.
- Assume on an access to z, Off evicts y while x is furthest in future.
- Change Off so that instead of y, x is evicted.
 - We skip the details; a case analysis is required
For a cache of size k, no deterministic caching algorithm can have a competitive ratio better than k.
Theorem

For a cache of size k, no deterministic caching algorithm can have a competitive ratio better than k.

- Consider any online algorithm A
- Create an adversarial sequence of length n on $k + 1$ pages so that A faults on every single request.
 - The cost of A will be n.
For a cache of size k, no deterministic caching algorithm can have a competitive ratio better than k.

For any such sequence, if FIF misses at one request, it hits in the next $k - 1$ requests.

- Assume FIF evicts page x for a request to z; so all $k + 1$ pages except x are in the cache.
- The next fault happens on a request to x.
- But we know all $k - 1$ pages (all pages in the cache except potentially z) have been request before the next request to x.
- In FIF, for each fault, there are at least $k - 1$ hits.
Caching Algorithms & Competitive Ratio

Theorem

For a cache of size k, no deterministic caching algorithm can have a competitive ratio better than k.

- On an adversarial sequence of length n on $k + 1$ pages:
 - A has a cost of n
 - FIF has a cost of at most n/k
- The ratio between the cost of A and FIF is at least k
So, no deterministic algorithm can be better than k-competitive.

- No algorithm is ‘competitive’ in the sense that the competitive ratio depends on the input.

Yet, a competitive ratio of k is much better than a ratio that depends on n.

- Why?
Caching Problem

Competitive Ratio of LRU

Theorem

*LRU has a competitive ratio of at most k.***
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.

- Use a **phase partitioning** technique.
- Define a phase as a sequence $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}$ so that requests in this range involve k different pages.
 - The next request σ_{i+m+1} is different from all these k requests.

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ d \ f \ a \ b \ a \ e \ldots \quad k = 4 \]
Theorem

LRU has a competitive ratio of at most k.

- Use a **phase partitioning** technique.
- Define a phase as a sequence $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}$ so that requests in this range involve k different pages.
 - The next request σ_{i+m+1} is different from all these k requests.

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ d \ f \ a \ b \ a \ e \ldots \quad k = 4$$

phase1
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.

- Use a phase partitioning technique.
- Define a phase as a sequence $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}$ so that requests in this range involve k different pages.
 - The next request σ_{i+m+1} is different from all these k requests.

$$\sigma = ab\underline{cd} b a \underline{cd} f a c d d f a b a e \ldots$$

$k = 4$
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.

- Use a **phase partitioning** technique.
- Define a phase as a sequence $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}$ so that requests in this range involve k different pages.
 - The next request σ_{i+m+1} is different from all these k requests.

$$\sigma = \underbrace{a b c b a d c}_{\text{phase1}} \underbrace{e f a c}_{\text{phase2}} \underbrace{d c d f a}_{\text{phase3}} b a e \ldots$$

$k = 4$
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.

- What is the cost of LRU per phase?
 - k different pages; LRU incurs at most k faults

- What is the cost of OPT per phase?
 - Each phase + next item has $k+1$ distinct pages
 - OPT has to pay a cost of 1 per phase!

$$\sigma = \underbrace{a \ b \ c \ b \ a \ d \ c}_{\text{phase1}} \hspace{1cm} \underbrace{e \ f \ a \ c}_{\text{phase2}} \hspace{1cm} \underbrace{d \ c \ d \ f \ a \ b \ a \ e \ldots}_{\text{phase3}} \quad k = 4$$
Theorem

LRU has a competitive ratio of at most k.

- What is the cost of LRU **per phase**?
 - k different pages; LRU incurs at most k faults

- What is the cost of OPT **per phase**?
 - Each phase + next item has $k + 1$ distinct pages
 - OPT has to pay a cost of 1 per phase!

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ d \ f \ a \ b \ a \ e \ \ldots$$

$k = 4$
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.

- The ratio between LRU and Opt is at most k per phase

$$c.r.(LRU) = \frac{LRU(\text{phase}_1) + \ldots + LRU(\text{phase}_N)}{Opt(\text{phase}_1) + \ldots + Opt(\text{phase}_N)} \leq \text{Max}_i \frac{LRU(\text{phase}_i)}{Opt(\text{phase}_i)} \leq k$$

$$\sigma = \{a, b, c, b, a, d, c, e, f, a, c, d, c, d, f, a, b, a, e, \ldots\} \quad k = 4$$

phase1 phase2 phase3
In the proof, we just used the fact that LRU has a cost of at most k for each phase.

For any subsequence formed by requests to k pages, LRU incurs a cost of at most k.
In the proof, we just used the fact that LRU has a cost of at most k for each phase.

- For any subsequence formed by requests to k pages, LRU incurs a cost of at most k

Can we extend this proof to other algorithms?
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \]
Marking Family of Algorithms

- A marking algorithm maintains a bit ('mark') for each page in the cache.
 - Start with all pages unmarked.
 - Upon a hit, mark the page.
 - Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \]
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \, b \]
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \]

\[
\begin{array}{c|c|c}
 a & b \\
 \checkmark & \checkmark & \\
\end{array}
\]
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit ('mark') for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
- If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ d \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ d \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \]
Marking Family of Algorithms

- A marking algorithm maintains a bit (‘mark’) for each page in the cache.
 - Start with all pages unmarked.
 - Upon a hit, mark the page.
 - Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

$$\sigma = a\ b\ c\ b\ e$$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Caching Problem

Marking Family of Algorithms

- A marking algorithm maintains a bit (‘mark’) for each page in the cache.
 - Start with all pages unmarked.
 - Upon a hit, mark the page.
 - Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \]

<table>
<thead>
<tr>
<th>f</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \ d \]

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \ d \]

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.

 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \]

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[
\sigma = a \ b \ c \ b \ e \ f \ d \ a
\]
Theorem

Any deterministic marking algorithms M has competitive ratio k.

What is the cost of M per phase?
- It starts the phase with all pages unmarked
- On the first request to x, it becomes marked
 - x remains in the cache until the end of the phase
 - M incurs a cost of 1 for x throughout the phase

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ d \ f \ a \ b \ a \ e \ \ldots$$

$k = 4$
Caching Problem

Marking Family of Algorithms (cntd.)

Theorem

Any deterministic marking algorithms M has competitive ratio k.

What is the cost of M per phase?

- It starts the phase with all pages unmarked
- At the end of the phase, all k pages of the phase are marked
- On the first request to x, it becomes marked
 - x remains in the cache until the end of the phase
 - M incurs a cost of 1 for x throughout the phase

$$\sigma = \underbrace{a b c b a d c}_{\text{phase 1}} \underbrace{e f a c}_{\text{phase 2}} \underbrace{d c d f a b a e \ldots}_{\text{phase 3}}$$

$k = 4$
Theorem

Any deterministic marking algorithms M *has competitive ratio* k.

- **What is the cost of* M **per phase?**
 - It starts the phase with all pages unmarked
 - At the end of the phase, all k pages of the phase are marked
 - On the first request to x, it becomes marked
 - x remains in the cache until the end of the phase
 - M incurs a cost of 1 for x throughout the phase
 - **For each phase, M incurs a cost of at most** k
 - Recall that OPT has to pay a cost of 1 per phase!

$$
\sigma = \underbrace{a \ b \ c \ b \ a \ d \ c}_{\text{phase 1}} \underbrace{e \ f \ a \ c}_{\text{phase 2}} \underbrace{d \ c \ d \ f \ a \ b \ a \ e \ \ldots}_{\text{phase 3}} \quad k = 4
$$
Marking Algorithms & LRU

Theorem

LRU is a marking algorithm
Caching Problem

Marking Algorithms & LRU

Theorem

LRU is a marking algorithm

- Assume LRU is not marking
 - So, it evicts a marked page *x* at some phase for a request to *y*
 - Both *x* and *y* are among *k* pages that define the phase
 - In order to evict *x*, it should be least-recently used, i.e., there should be *k* − 1 pages requested after *x* and before *y*.
 - Adding *x* and *y*, there will be *k* + 1 pages in the phase → contradiction
LRU and Flash-When-Full are marking algorithms
- They have competitive ratio k
Caching Problem

Marking Algorithms Remarks

- LRU and Flash-When-Full are marking algorithms
 - They have competitive ratio k
- FIFO is Not a marking algorithm
 - Yet, it has a competitive ratio of k.
Random Algorithm: in case an eviction is necessary, evict a page selected uniformly at random.
Randomized Paging Algorithms

- Random Algorithm: in case an eviction is necessary, evict a page selected uniformly at random.
- Random has a competitive ratio of k
- Is it good?
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm.
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.
MARK Algorithm

MARK Algorithm is a randomized marking algorithm.

In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.

- If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \] randomly evict \(b \) or \(e \)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>b</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

\(\sigma \): sequence of events that occur.
MARK Algorithm is a randomized marking algorithm.

In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.

If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \]

\(e \) was selected

\[\begin{array}{cccc}
 f & b & a & d \\
 \checkmark & \checkmark & \checkmark & \checkmark \\
\end{array} \]
MARK Algorithm is a randomized marking algorithm.

In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.

- If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \]

only \(b \) is unmarked

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>b</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm.
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \]

\[\boxed{\begin{array}{cccc}
f & c & a & d \\
\checkmark & \checkmark & \checkmark & \checkmark \\
\end{array}} \]

\[b \] is evicted
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
- If all pages are marked, unmark all of them.

$$\sigma = a\ b\ c\ b\ e\ f\ d\ a\ c\ e$$

| f | c | a | d |
MARK Algorithm is a randomized marking algorithm. In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages. If all pages are marked, unmark all of them.

\[\sigma = \text{a b c b e f d a c e} \quad \text{randomly evict from f, c, a, d} \]
MARK Algorithm is a randomized marking algorithm.

In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.

If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \ e \]

\(d \) is evicted

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>c</td>
<td>a</td>
<td>✓</td>
</tr>
</tbody>
</table>
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm.
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

\[
\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \ e \ b
\]

<table>
<thead>
<tr>
<th>f</th>
<th>c</th>
<th>a</th>
<th>e ✓</th>
</tr>
</thead>
</table>
Theorem

MARK has a competitive ratio of at most $2H_k$

- H_k is the k'th harmonic number

$$H_k = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k}$$
Caching Problem

Competitive ratio of MARK

Theorem

MARK has a competitive ratio of at most $2H_k$

- H_k is the k'th harmonic number

$$H_k = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k}$$

- For any k, we have $\ln k < H_k \leq 1 + \ln k$.
 - So $H_k \in \Theta(\log k)$
Caching Problem

Competitive ratio of MARK

Theorem

MARK has a competitive ratio of at most $2H_k$

- H_k is the k'th harmonic number

$$H_k = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k}$$

- For any k, we have $\ln k < H_k \leq 1 + \ln k$.
 - So $H_k \in \Theta(\log k)$

- No randomized algorithm can have a competitive ratio better than H_k
No paging algorithm can have a competitive ratio better than k

- LRU, FIFI, and FWF all have the optimal competitive ratio of k
No paging algorithm can have a competitive ratio better than k

- LRU, FIFI, and FWF all have the optimal competitive ratio of k

No randomized algorithm can have a competitive ratio better than $H_k \in \Theta(\log k)$.

- MARK has the optimal competitive ratio of H_k.
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

- This is called **Belady’s anomaly**

- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 1

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

$$a$$
Naturally, we expect that having more pages results in less faults. In some caching algorithms, the number of page-faults might increase when the number of available pages increases. This is called Belady’s anomaly. FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 2

$$
\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e
$$

<table>
<thead>
<tr>
<th>a</th>
<th></th>
</tr>
</thead>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 2

\[
\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e
\]

\[
\begin{array}{|c|c|}
\hline
a & b \\
\hline
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 3

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| a | b |
Naturally, we expect that having more pages results in less page faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady's anomaly.

FIFO suffers from Belady's anomaly.

Assume $k = 3$. FIFO Cost is: 3
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 4

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{ccc}
 a & b & c \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 4

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

\begin{array}{c|c|c}
| d | b | c |
\end{array}
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

- This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 5

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| d | b | c |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 5

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| d | a | c |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

- This is called Belady’s anomaly

- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 6

\[
\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e
\]
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 6

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| d | a | b |
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 7

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| d | a | b |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 7

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{|c|c|}
\hline
e & a & b \\
\hline
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 7

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

```
  e  a  b
```
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 7

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{ccc}
\ e & a & b \\
\end{array}
\]
Belady’s Anomaly

Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

- This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 7

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{c c c}
\vphantom{a} & \vphantom{a} & \vphantom{a} \\
\hline \\
e & a & b
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 7

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| e | a | b |
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 8

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

\[
\begin{array}{ccc}
 & e & a & b \\
\end{array}
\]
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 8

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>c</td>
<td>b</td>
</tr>
</tbody>
</table>
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>c</td>
<td>b</td>
</tr>
</tbody>
</table>
Belady’s Anomaly

Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

- This is called Belady’s anomaly

- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| e | c | d |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>

COMP 7720 - Online Algorithms Caching (Paging) Problem
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 9

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[\begin{array}{ccc}
 e & c & d \\
\end{array} \]
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
- This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 1

Assume $k = 3$.
FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

- This is called **Belady’s anomaly**

- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

Assume $k = 4$. FIFO Cost is: 2

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

| a | | |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called \textit{Belady’s anomaly}

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 2

Assume $k = 3$.
FIFO Cost is: 9

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e\]

\[
\begin{array}{|c|c|}
\hline
a & b \\
\hline
\end{array}
\]
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
- This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 4 \). FIFO Cost is: 3

Assume \(k = 3 \).
FIFO Cost is: 9

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{ccc}
a & b & \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 3

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{c|c|c}
 a & b & c \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{ccc}
 a & b & c \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults. In some caching algorithms, the number of page-faults might increase when the number of available pages increases. This is called Belady’s anomaly. FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$. FIFO Cost is: 9

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
- This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$.
FIFO Cost is: 9

$\sigma = a b c d a b e a b c d e$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$.
FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

```
  a b c d
```
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 5

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[\begin{array}{cccc}
 a & b & c & d
\end{array}\]
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 4 \). FIFO Cost is: \(5 \)

Assume \(k = 3 \).
FIFO Cost is: \(9 \)

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{cccc}
 e & b & c & d \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume \(k = 4 \). FIFO Cost is: 6

Assume \(k = 3 \).
FIFO Cost is: 9

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

<table>
<thead>
<tr>
<th>e</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases. This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 6

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 7

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>a</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 7

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

```
  e  a  b  d
```
Caching Problem

Belady’s Anomaly

Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 8

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td></td>
<td></td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 8

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{cccc}
e & a & b & c \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults. In some caching algorithms, the number of page-faults might increase when the number of available pages increases. This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 9

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{cccc}
\text{e} & \text{a} & \text{b} & \text{c}
\end{array}
\]
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 9

Assume $k = 3$.
FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

```
  d  a  b  c
```
Naturally, we expect that having more pages results in less faults. In some caching algorithms, the number of page-faults might increase when the number of available pages increases. This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 9

Assume $k = 4$. FIFO Cost is: 10

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 10
Assume $k = 3$. FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>e</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anomaly’s Summary

- We see more anomalies in analysis of online algorithms
- Project topic: make a survey on animality of different caching algorithms
 - Do some experiments, try to find anomaly examples by running algorithms on random inputs!