COMP 7720 - Online Algorithms

Caching (Paging) Problem

Shahin Kamali

Lecture 8 - Oct. 2, 2018

University of Manitoba
Review & Plan
Review & Plan

Today’s objectives

- Caching Problem
 - Optimal offline algorithm
 - Lower bound for deterministic algorithms
 - Marking algorithms & upper bounds
 - Randomized algorithms
 - Caching anomalies
Caching Problem
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache
 - In case x is not in the cache, a fault of cost 1 happens
 - In case x is in the cache, a hit of cost 0 happens
- The goal is to minimize the total number of faults
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy
Caching Problem

Problem Definition

There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

- The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.

To bring x to the cache, we might need to evict a page.

- A caching algorithm is defined through its eviction policy.

Cost (number of faults): 0

$$\sigma = \begin{array}{cccc} \ & \ & \ & \ & \ \end{array}$$
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 1

\[\sigma = a \]

a
There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

- The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 2

$$\sigma = \begin{bmatrix} a & b \\ a & _ _ _ _ \end{bmatrix}$$
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 3

$\sigma = a \ b \ c$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults):

$$\sigma = a \ b \ c \ b$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a **fault** of cost 1 happens.
 - In case x is in the cache, a **hit** of cost 0 happens.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to **evict** a page.
 - A caching algorithm is defined through its **eviction policy**.

Cost (number of faults): 3

\[\sigma = a \ b \ c \ b \ a \]

\[
\begin{array}{ccc}
a & b & c \\
\end{array}
\]
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size
- The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache
 - In case x is not in the cache, a fault of cost 1 happens
 - In case x is in the cache, a hit of cost 0 happens
 - The goal is to minimize the total number of faults
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy

\[
\text{Cost (number of faults): } 4 \\
\sigma = a \ b \ c \ b \ a \ c \ b \ a \ d \\
\begin{array}{cccc}
a & b & c & d \\
\end{array}
\]
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache:
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 4

$$\sigma = a \ b \ c \ b \ a \ d \ c$$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Caching Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache:
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 5

$\sigma = a$ b c b a d c e

\[
\begin{array}{cccc}
 a & b & c & d \\
\end{array}
\]
There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

- The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.

To bring x to the cache, we might need to evict a page.

A caching algorithm is defined through its eviction policy.

Cost (number of faults):

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e$$

$$\begin{array}{|c|c|c|c|}
\hline
a & e & c & d \\
\hline
\end{array}$$
LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

\[
\begin{array}{cccc}
 a & b & c & d \\
\end{array}
\]
LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]
Caching Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

| a | e | c | d |
Caching Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

<table>
<thead>
<tr>
<th>f</th>
<th>e</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 7

σ = a b c b a d c e f a

| f | e | c | d |
Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>e</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>
Caching Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

| e | b | c | d |
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

\[\begin{array}{cccc}
 e & b & c & d \\
\end{array} \]
Caching Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

\[
\begin{array}{cccc}
e & f & c & d \\
\end{array}
\]
FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

| e | f | c | d |
FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[
\begin{array}{|c|c|c|}
\hline
e & f & a & d \\
\hline
\end{array}
\]
Caching Problem

Flash-When-Full (FWF)

FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Caching Problem

Flash-When-Full (FWF)

FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

| e | | | |
Flash-When-Full (FWF)

FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>f</td>
<td></td>
</tr>
</tbody>
</table>
Flash-When-Full (FWF)

- FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

| e | f | | |
Flash-When-Full (FWF)

FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[\begin{array}{c|c|c|}
 e & f & \\
\end{array} \]
Caching Problem

Flash-When-Full (FWF)

FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[
\begin{array}{ccc}
 e & f & a \\
\end{array}
\]
An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

| a | b | c | d |
An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

<table>
<thead>
<tr>
<th>a</th>
<th>e</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Caching Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

Cost (number of faults): 6
Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

| a | f | c | d |
Caching Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

| a | f | c | d |
Caching Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>f</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>f</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Theorem

Furthest-In-Future (FIF) is the optimal offline algorithm for Caching.

- Idea: we can modify any optimal algorithm \(\text{OFF} \) to work similar to FIF without increasing its cost.
- Assume on an access to \(z \), \(\text{OFF} \) evicts \(y \) while \(x \) is furthest in future.
- Change \(\text{OFF} \) so that instead of \(y \), \(x \) is evicted.
 - We skip the details; a case analysis is required.
Theorem

For a cache of size k, no deterministic caching algorithm can have a competitive ratio better than k.
Theorem

For a cache of size k, no deterministic caching algorithm can have a competitive ratio better than k.

- Consider any online algorithm A
- Create an adversarial sequence of length n on $k + 1$ pages so that A faults on every single request.
 - The cost of A will be n.
Theorem

For a cache of size \(k \), no deterministic caching algorithm can have a competitive ratio better than \(k \).

For any such sequence, if FIF misses at one request, it hits in the next \(k - 1 \) requests.

- Assume FIF evicts page \(x \) for a request to \(z \); so all \(k + 1 \) pages except \(x \) are in the cache.
- The next fault happens on a request to \(x \).
- But we know all \(k - 1 \) pages (all pages in the cache except potentially \(z \)) have been request before the next request to \(x \).
- In FIF, for each fault, there are at least \(k - 1 \) hits.
Caching Algorithms & Competitive Ratio

Theorem

For a cache of size k, no deterministic caching algorithm can have a competitive ratio better than k.

- On an adversarial sequence of length n on $k + 1$ pages:
 - A has a cost of n
 - FIF has a cost of at most n/k
- The ratio between the cost of A and FIF is at least k
So, no deterministic algorithm can be better than k-competitive.

- No algorithm is ‘competitive’ in the sense that the competitive ratio depends on the input.

Yet, a competitive ratio of k is much better than a ratio that depends on n.

- Why?
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.
Theorem

\textit{LRU has a competitive ratio of at most }k\textit{.}

- Use a \textbf{phase partitioning} technique.

- Define a phase as a sequence \(\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}\) so that requests in this range involve \(k\) different pages.

 - The next request \(\sigma_{i+m+1}\) is different from all these \(k\) requests.

\[\sigma = a\ b\ c\ b\ a\ d\ c\ e\ f\ a\ c\ d\ c\ d\ f\ a\ b\ a\ e\ \ldots\ \quad k = 4\]
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.

- Use a phase partitioning technique.
- Define a phase as a sequence $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}$ so that requests in this range involve k different pages.
 - The next request σ_{i+m+1} is different from all these k requests.

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ d \ f \ a \ b \ a \ e \ \ldots \quad k = 4$$

phase1
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.

- Use a **phase partitioning** technique.
- Define a phase as a sequence $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}$ so that requests in this range involve k different pages.
 - The next request σ_{i+m+1} is different from all these k requests.

$\sigma = \underbrace{a\ b\ c\ b\ a\ d\ c}_{\text{phase 1}}\ \underbrace{e\ f\ a\ c\ d\ c\ d\ f\ a\ b\ a\ e\ \ldots}_{\text{phase 2}}\ k = 4$
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most k.

- Use a **phase partitioning** technique.
- Define a phase as a sequence $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}$ so that requests in this range involve k different pages.
 - The next request σ_{i+m+1} is different from all these k requests.

$$\sigma = \underbrace{a b c b a d c}_{\text{phase 1}} \underbrace{e f a c}_{\text{phase 2}} \underbrace{d c d f a b a e \ldots}_{\text{phase 3}}$$

$k = 4$
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most \(k \).

- What is the cost of LRU **per phase**?
 - \(k \) different pages; LRU incurs at most \(k \) faults

- What is the cost of OPT **per phase**?
 - Each phase + next item has \(k + 1 \) distinct pages
 - \(\text{OPT} \) has to pay a cost of 1 per phase!

\[\sigma = \underbrace{a b c b a d c}_{\text{phase 1}} \underbrace{e f a c}_{\text{phase 2}} \underbrace{d c d f a}_{\text{phase 3}} b a e \ldots \]

\(k = 4 \)
Caching Problem

Competitive Ratio of LRU

Theorem

LRU has a competitive ratio of at most \(k \).**

- What is the cost of LRU **per phase**?
 - \(k \) different pages; LRU incurs at most \(k \) faults

- What is the cost of OPT **per phase**?
 - Each phase + next item has \(k + 1 \) distinct pages
 - OPT has to pay a cost of 1 per phase!

\[
\sigma = \underbrace{a b c b a d c}_{\text{phase1}} \underbrace{e f a c}_{\text{phase2}} \underbrace{d c d f a}_{\text{phase3}} \underbrace{b a e \ldots}_{\text{...}}
\]

\(k = 4 \)
Theorem

LRU has a competitive ratio of at most k.

- The ratio between LRU and OPT is at most k per phase

$$c.r.(LRU) = \frac{LRU(\text{phase1}) + \ldots + LRU(\text{phaseN})}{OPT(\text{phase1}) + \ldots + OPT(\text{phaseN})} \leq \max_i \frac{LRU(\text{phasei})}{OPT(\text{phasei})} \leq k$$

$$\sigma = a b c b a d c e f a c d c d f a b a e \ldots \quad k = 4$$
Other algorithms with c.r. k?

- In the proof, we just used the fact that LRU has a cost of at most k for each phase.
 - For any subsequence formed by requests to k pages, LRU incurs a cost of at most k.
In the proof, we just used the fact that LRU has a cost of at most k for each phase.

- For any subsequence formed by requests to k pages, LRU incurs a cost of at most k.

Can we extend this proof to other algorithms?
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \]
Caching Problem

Marking Family of Algorithms

A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \]

<table>
<thead>
<tr>
<th>a</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \]
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \]
A marking algorithm maintains a bit ('mark') for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \]
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Caching Problem

Marking Family of Algorithms

A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ d \]

\[
\begin{array}{ccc}
 a & b & c \\
 \checkmark & \checkmark & \checkmark
\end{array}
\]
Caching Problem

Marking Family of Algorithms

- A marking algorithm maintains a bit ('mark') for each page in the cache.
 - Start with all pages unmarked.
 - Upon a hit, mark the page.
 - Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ d \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \]
Caching Problem

Marking Family of Algorithms

- A marking algorithm maintains a bit (‘mark’) for each page in the cache.
 - Start with all pages unmarked.
 - Upon a hit, mark the page.
 - Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[
\sigma = a \ b \ c \ b \ e \ f
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a\ b\ c\ b\ e\ f \]

\[
\begin{array}{cccc}
 f & b & e & d \\
 \checkmark & & \checkmark &
\end{array}
\]
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \ d \]

<table>
<thead>
<tr>
<th>f</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \ d \]

<table>
<thead>
<tr>
<th>f</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \]

<table>
<thead>
<tr>
<th>f</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A marking algorithm maintains a bit (‘mark’) for each page in the cache.

- Start with all pages unmarked.
- Upon a hit, mark the page.
- Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \]

<table>
<thead>
<tr>
<th>f</th>
<th>a</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Marking Family of Algorithms (cntd.)

Theorem

Any deterministic marking algorithms M has competitive ratio k.

- What is the cost of M per phase?
 - It starts the phase with all pages unmarked
 - On the first request to x, it becomes marked
 - x remains in the cache until the end of the phase
 - M incurs a cost of 1 for x throughout the phase

$$\sigma = \underbrace{a \ b \ c \ b \ a \ d \ c}_{\text{phase 1}} \underbrace{e \ f \ a \ c}_{\text{phase 2}} \underbrace{d \ c \ d \ f \ a \ b \ a \ e}_{\text{phase 3}} \ldots$$

$k = 4$
Theorem

Any deterministic marking algorithms M has competitive ratio k.

What is the cost of M per phase?

- It starts the phase with all pages unmarked
- At the end of the phase, all k pages of the phase are marked
- On the first request to x, it becomes marked
 - x remains in the cache until the end of the phase
 - M incurs a cost of 1 for x throughout the phase

$$\sigma = \underbrace{a \ b \ c \ b \ a \ d \ c}_{\text{phase 1}} \ \underbrace{e \ f \ a \ c}_{\text{phase 2}} \ \underbrace{d \ c \ d \ f \ a \ b \ a \ e \ \ldots}_{\text{phase 3}}$$

$k = 4$
Theorem

Any deterministic marking algorithms M has competitive ratio k.

- What is the cost of M per phase?
 - It starts the phase with all pages unmarked
 - At the end of the phase, all k pages of the phase are marked
 - On the first request to x, it becomes marked
 - x remains in the cache until the end of the phase
 - M incurs a cost of 1 for x throughout the phase
 - **For each phase, M incurs a cost of at most k**
 - Recall that OPT has to pay a cost of 1 per phase!

$\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ d \ f \ a \ b \ a \ e \ \ldots$ \hspace{1cm} $k = 4$
Theorem

LRU is a marking algorithm
Marking Algorithms & LRU

Theorem

LRU is a marking algorithm

- Assume LRU is not marking
 - So, it evicts a marked page x at some phase for a request to y
 - Both x and y are among k pages that define the phase
 - In order to evict x, it should be least-recently used, i.e., there should be $k - 1$ pages requested after x and before y.
 - Adding x and y, there will be $k + 1$ pages in the phase → contradiction
Caching Problem

Marking Algorithms Remarks

- LRU and Flash-When-Full are marking algorithms
 - They have competitive ratio k
Marking Algorithms Remarks

- LRU and Flash-When-Full are marking algorithms
 - They have competitive ratio k
- FIFO is Not a marking algorithm
 - Yet, it has a competitive ratio of k.
Caching Problem

Randomized Paging Algorithms

- Random Algorithm: in case an eviction is necessary, evict a page selected uniformly at random.
Randomized Paging Algorithms

- Random Algorithm: in case an eviction is necessary, evict a page selected uniformly at random.
- Random has a competitive ratio of k
- Is it good?
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm.
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

\[\sigma = a\ b\ c\ b\ e\ f\ d\ a \] randomly evict b or e

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>b</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \]
e was selected

<table>
<thead>
<tr>
<th>f</th>
<th>b</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \]
only b is unmarked
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

\[\sigma = a \; b \; c \; b \; e \; f \; d \; a \; c \]

\(b \) is evicted

<table>
<thead>
<tr>
<th>f</th>
<th>c</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Caching Problem

MARK Algorithm

- MARK Algorithm is a randomized marking algorithm
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

$$\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \ e$$

| f | c | a | d |
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm.
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
- If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \ e \]

randomly evict from \(f, c, a, d \)

| f | c | a | d |
Caching Problem

MARK Algorithm

- MARK Algorithm is a randomized marking algorithm
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \ e \quad d \text{ is evicted} \]

<table>
<thead>
<tr>
<th>f</th>
<th>c</th>
<th>a</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
MARK Algorithm is a randomized marking algorithm. In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages. If all pages are marked, unmark all of them.

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \ e \ b \]
Caching Problem

Competitive ratio of MARK

Theorem

MARK has a competitive ratio of at most $2H_k$

- H_k is the k'th harmonic number

$$H_k = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k}$$
Theorem

MARK has a competitive ratio of at most \(2H_k\)

- \(H_k\) is the \(k\)'th harmonic number

 \[H_k = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k}\]

- For any \(k\), we have \(ln k < H_k \leq 1 + ln k\).

 So \(H_k \in \Theta(\log k)\)
Theorem

MARK has a competitive ratio of at most \(2H_k\)

- \(H_k\) is the \(k\)'th harmonic number

\[
H_k = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k}
\]

- For any \(k\), we have \(\ln k < H_k \leq 1 + \ln k\).
 - So \(H_k \in \Theta(\log k)\)
- No randomized algorithm can have a competitive ratio better than \(H_k\)
No paging algorithm can have a competitive ratio better than k

- LRU, FIFI, and FWF all have the optimal competitive ratio of k
Summary of paging algorithms

- No paging algorithm can have a competitive ratio better than k
 - LRU, FIFI, and FWF all have the optimal competitive ratio of k
- No randomized algorithm can have a competitive ratio better than $H_k \in \Theta(\log k)$.
 - MARK has has the optimal competitive ratio of H_k.
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 1

$$\sigma = a b c d a b e a b c d e$$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
Belady’s Anomaly

Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 2

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

a
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 2

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
</table>
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: \(3 \)

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

| a | b |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 3

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 4

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 4

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 5

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| d | b | c |
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 5

$$\sigma = \text{a b c d a b e a b c d e}$$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 6

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| d | a | c |
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 6

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

```
  d  a  b
```
Naturally, we expect that having more pages results in less faults.

- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly

- FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 7

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{ccc}
d & a & b \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 7

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{c|c|c}
e & a & b \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: \(7 \)

\[\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e \]

\[
\begin{array}{ccc}
 e & a & b \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 7

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

- This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 7

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 7

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| | e | a | b |
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called **Belady’s anomaly**
- FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 8

\[
\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e
\]

\[
\begin{array}{ccc}
e & a & b \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 8

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

```
| e | c | b |
```
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume \(k = 3 \). FIFO Cost is: 9

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$

| e | c | d |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 9
Naturally, we expect that having more pages results in less faults. In some caching algorithms, the number of page-faults might increase when the number of available pages increases. This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 3$. FIFO Cost is: 9

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

Assume $k = 4$. FIFO Cost is: 1
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 2

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

| a | | |
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

Assume $k = 4$. FIFO Cost is: 2

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th></th>
</tr>
</thead>
</table>

COMP 7720 - Online Algorithms Caching (Paging) Problem
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume \(k = 4 \). FIFO Cost is: 3

Assume \(k = 3 \).
FIFO Cost is: 9

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{c|c|c}
\hline
a & b & \hline
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume \(k = 4 \). FIFO Cost is: 3

Assume \(k = 3 \).
FIFO Cost is: 9

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]
Naturally, we expect that having more pages results in less faults. In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

| a | b | c |
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 3 \).
FIFO Cost is: 9

Assume \(k = 4 \).
FIFO Cost is: 4

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{|c|c|c|c|}
\hline
a & b & c & d \\
\hline
\end{array}
\]
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$.
FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

| a | b | c | d |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$. FIFO Cost is: 9

$$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called **Belady’s anomaly**

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 4

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

Assume $k = 4$. FIFO Cost is: 4

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{cccc}
 a & b & c & d \\
\end{array}
\]
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly.
- FIFO suffers from Belady’s anomaly.

Assume \(k = 4 \). FIFO Cost is: \(5 \)

Assume \(k = 3 \).
FIFO Cost is: \(9 \)

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 5

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 6

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

| e | b | c | d |
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
- This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume \(k = 4 \). FIFO Cost is: 6

Assume \(k = 3 \).
FIFO Cost is: 9

\(\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \)

| e | a | c | d |
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 7

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{cccc}
 e & a & c & d \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 7

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>a</td>
<td></td>
<td>d</td>
</tr>
</tbody>
</table>
Naturally, we expect that having more pages results in less faults. In some caching algorithms, the number of page-faults might increase when the number of available pages increases. This is called Belady’s anomaly. FIFO suffers from Belady’s anomaly.

Assume \(k = 3 \). FIFO Cost is: 9

Assume \(k = 4 \). FIFO Cost is: 8

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{cccc}
\text{e} & \text{a} & \text{b} & \text{d}
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume \(k = 4 \). FIFO Cost is: 8

Assume \(k = 3 \).
FIFO Cost is: 9

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{cccc}
e & a & b & c \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 9

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

| e | a | b | c |
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly.

FIFO suffers from Belady’s anomaly.

Assume $k = 4$. FIFO Cost is: 9

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$

\[
\begin{array}{cccc}
d & a & b & c \\
\end{array}
\]
Naturally, we expect that having more pages results in less faults.

In some caching algorithms, the number of page-faults might increase when the number of available pages increases.

This is called Belady’s anomaly

FIFO suffers from Belady’s anomaly

Assume $k = 4$. FIFO Cost is: 10

Assume $k = 3$. FIFO Cost is: 9

$\sigma = a\ b\ c\ d\ a\ b\ e\ a\ b\ c\ d\ e$

\[
\begin{array}{|c|c|c|c|}
\hline
d & a & b & c \\
\hline
\end{array}
\]
Caching Problem

Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

Assume $k = 4$. FIFO Cost is: 10

\[\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e \]

\[
\begin{array}{cccc}
d & e & b & c
\end{array}
\]
Anomaly’s Summary

- We see more anomalies in analysis of online algorithms
- Project topic: make a survey on animality of different caching algorithms
 - Do some experiments, try to find anomaly examples by running algorithms on random inputs!