While waiting, in case you have your laptop/cell-phone with you:

- go to https://www.iclicker.com/students and register/log-in as a student
- find “Online Algorithms” course at “University of Manitoba”, and add it to your courses!
- join the class at the beginning of the class

Picture is from the cover of the book by Borodin and El-Yaniv. See Slide 6.
In a Glance . . .

- Online algorithms are
 - Practical
 - Diverse
 - Fun (really!)
Online algorithms are
 - Practical
 - Diverse
 - Fun (really!)

Let’s ‘play’ with online algorithms and enjoy
Instructor

Shahin Kamali

- joined UM in July 2017, before that was a postdoc at MIT (2015-2017), and before that did a PhD at U. Waterloo (2008-2014)
- has a broad research interest, including topics related to graph algorithms, online algorithms, block-chain technology, performance engineering, etc.
Introduction

Instructor

Shahin Kamali

joined UM in July 2017, before that was a postdoc at MIT (2015-2017), and before that did a PhD at U. Waterloo (2008-2014)

has a broad research interest, including topics related to graph algorithms, online algorithms, block-chain technology, performance engineering, etc.

Your turn to ...

Introduce yourself.

Your research group, research interests.
Formalities

see http://www.cs.umanitoba.ca/~kamalis/fall19/info.pdf for all details.
Formalities

Logistics

- Lecture: Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Room: 164

Piazza: https://piazza.com/umanitoba.ca/fall2019/comp7720

Office hours: 11:30am-12:30pm, Mondays and 2:00pm-3:00pm, Tuesdays, in E2 586 or by appointment
Formalities

Logistics

- **Lecture:** Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Room: 164
- **Webpage:**
 http://www.cs.umanitoba.ca/ kamalis/fall19/comp4060-7720.html
Logistics

- **Lecture:** Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Room: 164

- **Webpage:**
 http://www.cs.umanitoba.ca/~kamalis/fall19/comp4060-7720.html
Logistics

- Lecture: Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Room: 164

- Webpage:
 http://www.cs.umanitoba.ca/~kamalis/fall19/comp4060-7720.html

- Piazza: https://piazza.com/umanitoba.ca/fall2019/comp7720
Formalities

Logistics

- Lecture: Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Room: 164

- Webpage:
 http://www.cs.umanitoba.ca/ kamalis/fall19/comp4060-7720.html

- Piazza: https://piazza.com/umanitoba.ca/fall2019/comp7720

- Office hours: 11:30am-12:30pm, Mondays and 2:00pm-3:00pm Tuesdays, in E2 586 or by appointment
Formalities

Textbook

- A list of required reading will be provided on the course webpage.
- No book is required to be purchased.
- The following book is suggested as a reference:
 - Borodin and El-Yaniv, Online Computation and Competitive Analysis (2005)
Formalities

Grading

There will be:

- Four assignments
- Two exams
- A course project
- Class participation
Grading

There will be:

- Four assignments
- Two exams
- A course project
- Class participation

Theorem

The focus of this course is on learning, discovering, and research.
Formalities

Grading

There will be:

- Four assignments
- Two exams
- A course project
- Class participation

Theorem

The focus of this course is on learning, discovering, and research.

Corollary

Don’t worry too much about your final mark (but worry a little bit).
Grading (cntd.)

- Four assignments:
 - 30 percent of the final mark
 - there will be extra marks for bonus questions.
 - submit only pdf files (preferably use \(\LaTeX \))
 - we will use Crowdmark
Formalities

Grading (cntd.)

- Four assignments:
 - 30 percent of the final mark
 - there will be extra marks for bonus questions.
 - submit only pdf files (preferably use \LaTeX)
 - we will use Crowdmark
 - An additional assignment, Assignment 0, will be posted shortly.
 - It gives you a chance to assess your background and learn to work with \LaTeX, Piazza, and Crowdmark.
 - It gives you a chance to drop the course before it is too late if you lack the background.
Four assignments:

- 30 percent of the final mark
- there will be extra marks for bonus questions.
- submit only pdf files (preferably use \LaTeX)
- we will use Crowdmark
- An additional assignment, Assignment 0, will be posted shortly.
 - It gives you a chance to assess your background and learn to work with \LaTeX, Piazza, and Crowdmark.
 - It gives you a chance to drop the course before it is too late if you lack the background.

Exams:

- 30 percent of the final mark (15 percent each)
- Sample exams will be provided for practice
Formalities

Projects

- Course project
 - 30 percent of the final mark
 - Extra marks for outstanding projects (publishable projects)
 - Work individually or in groups of two

- Projects involve:
 - Proposal
 - Presentation
 - Final report (in form of a research paper)
Projects (cntd.)

- Project topics will be suggested in the first few weeks of the class
 - You can choose your own topic based on your research
 - Come to office hours to talk about it!
Projects (cntd.)

- Project topics will be suggested in the first few weeks of the class
 - You can chose your own topic based on your research
 - Come to office hours to talk about it!
- Project categories:
 - Exploring possible solutions to an open problem
 - Writing a survey paper on a current topic related to online algorithms
 - Writing code to implement and compare the performance of online algorithms for a problem
Formalities

Projects

Class participation:

- 10 percent of the final mark
- Don’t be shy; ask questions, answer my questions, seat in the frontline!
- We use iClicker: bring a laptop or a smart-phone to the class
 - Register as a student on https://www.iclicker.com/students
 - If you have a laptop/phone with you, take the following steps (otherwise, bring one for the next class):
 - Look for “Online Algorithms” under “University of Manitoba”.
 - Join the class!
Informalities

Trying iClicker

- Answer the following question using iClicker app/website.
- There is not necessarily a single correct answer; your responses are not “marked”.

Quiz

Indicate why did you take the online algorithm course:

(a) I like Internet and programming on web

(b) My supervisor requested/forced me to take this course.

(c) I just need it to complete my program’s course requirements, and there are not many options.

(d) I love theoretical computer science.
Formalities

Important Dates (tentative)

September 5: the first class
September 18: assignment 1 due
September 25: project proposal due
October 4: assignment 2 due
October 16: assignment 3 due
October 18: chocolate cupcake day
October 24: exam 1 (in class)

November 12-15: fall break
November 18: VW deadline
November 21: assignment 4 due
November 25-28: project presentation dates
December 5: exam 2 (in class)
December 13: project final report due
Online Algorithms
Online Algorithms

Offline vs. Online Algorithms

- Traditional algorithms are ‘offline’ in the sense that they have the whole input in their hand.
- Online algorithms, in contrast, do not have/need the whole input in order to solve a problem.
 - The input is a ‘sequence’ which is processed by the online algorithm piece-by-piece.
 - The online algorithms often take irrevocable decisions to process the input.
Bin Packing Problem

- The input is a set/sequence of items of various sizes
 - E.g., \(<9, 3, 8, 5, 1, 1, 3, 2, 4, 2, 4, 5, 5, 8, 6, 4, 5, ... >\).
Bin Packing Problem

- The input is a set/sequence of items of various sizes.
 - E.g., \(<9, 3, 8, 5, 1, 1, 3, 2, 4, 2, 4, 5, 5, 8, 6, 4, 5, \ldots>\).

- The goal is to pack these items into a minimum number of bins of uniform capacity.
In the online setting:

- an algorithm receives items one by one
- when it receives an item, it has to place it in a bin without any knowledge about forthcoming items
- decisions of the algorithms are irrevocable (i.e., cannot move items between bins)
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there.
- Open a new bin if such bin does not exist.

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there.
- Open a new bin if such bin does not exist.

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

Diagram showing bin allocation with items 9 and 3.
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

![Diagram of bin packing algorithm]

```plaintext
< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
```
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there.
- Open a new bin if such bin does not exist.

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

<9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5>
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

```
1 1 2 2 2 4 5 5 8 5
```

```
9 5 8 3 4 5 4 8 6 5
```
Online Algorithms

Competitive Ratio

- We use the framework of competitive analysis to compare online algorithms.
We use the framework of competitive analysis to compare online algorithms.

Let \(\text{OPT} \) denote the best possible offline solution.

- Given a sequence \(\sigma \), \(\text{OPT} \) is an algorithm which packs items in \(\sigma \) in a minimum number of bins.
We use the framework of *competitive analysis* to compare online algorithms.

Let OPT denote the best possible offline solution.

- Given a sequence σ, OPT is an algorithm which packs items in σ in a minimum number of bins.

Competitive ratio of an algorithm A is the maximum ratio between the cost of A and that of OPT over all sequences:

$$cr(A) \equiv \max_{\sigma} \frac{\text{cost}_A(\sigma)}{\text{cost}_{\text{OPT}}(\sigma)}$$
For First Fit, the competitive ratio is 1.7 [Johnson 1973]
For First Fit, the competitive ratio is 1.7 [Johnson 1973]

- The number of bins opened by FF for any sequence is at most 1.7 times that of OPT, i.e., \(c.r. \leq 1.7 \) (upper bound for FF)
- There are sequences for which the number of bins opened by FF is 1.7 times that of OPT, i.e., \(c.r. \geq 1.7 \) (lower bound for FF)
For First Fit, the competitive ratio is 1.7 [Johnson 1973]

- The number of bins opened by FF for any sequence is at most 1.7 times that of OPT, i.e., $c.r. \leq 1.7$ (upper bound for FF)
- There are sequences for which the number of bins opened by FF is 1.7 times that of OPT, i.e., $c.r. \geq 1.7$ (lower bound for FF)

The best existing online algorithm has c.r. of 1.5783 [Balogh et al. 2017]
Online Algorithms

Competitive Ratio of First Fit

- For First Fit, the competitive ratio is 1.7 [Johnson 1973]
 - The number of bins opened by FF for any sequence is at most 1.7 times that of OPT, i.e., $c.r. \leq 1.7$ (upper bound for FF)
 - There are sequences for which the number of bins opened by FF is 1.7 times that of OPT, i.e., $c.r. \geq 1.7$ (lower bound for FF)

- The best existing online algorithm has c.r. of 1.5783 [Balogh et al. 2017]

- No algorithm can be better than 1.54037-competitive (best general lower bound) [Balogh et al. 2015].
Ski-rental problem

- Assume you want to go skiing for \(x \) number of days
 - In the online setting, the value of \(x \) is unknown!
Online Algorithms

Ski-rental problem

- Assume you want to go skiing for \(x \) number of days
 - In the online setting, the value of \(x \) is unknown!
- You can buy the equipment for a one-time cost of \(b \) or rent each day for a cost of 1 per day
Ski-rental problem

- Assume you want to go skiing for x number of days
 - In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day
- If we know x, what is the best solution?
Online Algorithms

Ski-rental problem

- Assume you want to go skiing for \(x \) number of days
 - In the online setting, the value of \(x \) is unknown!
- You can buy the equipment for a one-time cost of \(b \) or rent each day for a cost of 1 per day
- If we know \(x \), what is the best solution?
 - Buy at the beginning if \(x \geq b \), otherwise, rent every day
Online strategy **break-even**: rent for the first \(b - 1 \) days and buy in the next day.
Online strategy **break-even**: rent for the first $b - 1$ days and buy in the next day.

What is the competitive ratio of Break-even algorithm?
Online strategy **break-even**: rent for the first $b - 1$ days and buy in the next day.

What is the competitive ratio of Break-even algorithm?

Theorem

Competitive ratio is roughly 2, and it is the best for any deterministic online algorithm.
Syllabus

Syllabus
In many occasions, a ‘doubling technique’ can be used to design and analyze online algorithms.

- The lost cow problem
- Online bidding
Potential function technique is a classic approach for analysis of online problems

- The paging problem, Sleator-Tarjan proof, randomized paging
Syllabus

Data structures

- Self-adjusting data structures
 - list update problem
 - data compression
 - self-adjusting binary trees, and dynamic optimality conjecture
Packing problems

- Weighting technique
 - Bin packing
 - Renting servers in the cloud
 - Online scheduling
Algorithm design as a “game” between an online algorithm and an adversary.

How you can “train” an algorithm based on an input data that is being evolved?

“Combining experts advice” problem
Graph problems

- k-server problem
- Graph coloring
- Bipartite matching
Syllabus

Computation geometry

- Robot searching
- 2-dimensional bin packing
Online algorithms with Advice: what if we have partial information about future?
- Algorithms with advice for paging, bin packing, list update
- **Many project ideas here!**
Alternative analysis techniques

- Competitive ratio is a *worst-case measure*
- Alternative analysis techniques are used to compare algorithms based on their typical behaviour
 - Bijective analysis
 - Relative worst-order analysis