List Update Problem
List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

< d b b d c a c >
List Accessing Problem

- The input is a set of *requests* to items in a list.
- The cost of accessing an item in index i is i.

```
< d b b d c a c >
cost: 4
```

Diagram:
```
a → b → c → d → e
```
Problem Statement

List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

$\langle d\ b\ b\ d\ c\ a\ c \rangle$

Cost: $4+2$
The input is a set of requests to items in a list.
The cost of accessing an item in index i is i.

List: `<d b b d c a c>`
Cost: $4 + 2 + 2$
Problem Statement

List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

$< d \ b \ b \ d \ c \ a \ c >$

cost: $4 + 2 + 2 + 4$

\[
\begin{array}{c}
\text{a} \\
\rightarrow \\
\text{b} \\
\rightarrow \\
\text{c} \\
\rightarrow \\
\text{d} \\
\rightarrow \\
\text{e}
\end{array}
\]
List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

$\langle \text{d b b d c a c} \rangle$

Cost: $4 + 2 + 2 + 4 + 3$

![Diagram of a list with items a, b, c, d, e and arrows connecting them. The cost calculation is shown.]
Problem Statement

List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

\[
< \text{d b b d c a c} > \\
\text{cost: } 4 + 2 + 2 + 4 + 3 + 1
\]
List Accessing Problem

- The input is a set of *requests* to items in a list.
- The cost of accessing an item in index i is i.

\[
< d \ b \ b \ d \ c \ a \ c >
\]
\[
\text{cost: } 4+2+2+4+3+1+3 = 19
\]
An instance of **self-adjusting data structures**.

The structure adjusts itself based on the input queries.
An instance of **self-adjusting data structures**.

The structure adjusts itself based on the input queries.

List update was formulated in 1984 by Sleator and Tarjan

- This result of Sleator and Tarjan made online algorithms popular in the following two decades
- There are applications in data-compression!
Problem Statement

Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).
Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).

- Free exchanges: Move a requested item closer to the front without any cost.

< d b b d c a c >

cost: 4
Problem Statement

Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).
 - Free exchanges: Move a requested item closer to the front without any cost.

```
< d b b d e a c >
cost: 4
```

```
< d b b d c a c >
cost: 4
```
Problem Statement

Self-Adjusting Lists

Update a list of length \(k\) to adjust it to the patterns in the input sequence of length \(n\) \((n \gg k)\).

- Free exchanges: Move a requested item closer to the front without any cost.
- Paid exchanges: Swap positions of two consecutive items with a cost 1.

Example:

\[
< d\ b\ b\ d\ c\ a\ c >
\]

cost: 4
Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input sequence of length n ($n \gg k$).

- Free exchanges: Move a requested item closer to the front without any cost.
- Paid exchanges: Swap positions of two consecutive items with a cost 1.

< d b b d c a c >

cost: 4
In the offline version of the problem, you have access to the whole set at the beginning.

- The problem is NP-hard.
Problem Statement

List Update Problem

- In the offline version of the problem, you have access to the whole set at the beginning.
 - The problem is NP-hard.
- In the online setting, the requests appear in an online, sequential manner.
 - An online algorithm should reorder the list without looking at the future requests.
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

```
< d b b d c a c >
cost: 4
```

```
a b c d e
< d b b d c a c >
cost: 4
```
Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
< d \ b \ b \ d \ c \ a \ c >
\]

Cost: 4
Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

< d b b d c a c >

cost: 4 + 3
Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
\langle d\ b\ b\ d\ c\ a\ c \rangle
\]

\[
\text{cost: } 4 + 3
\]
Move-To-Front (MTF)

- After each access, move the requested item to the front.
 - It only uses free exchanges.

< d b b d c a c >

cost: 4+3+1
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
< d \ b \ b \ d \ c \ a \ c >
\]

\[\text{cost: } 4 + 3 + 1 + 2\]
Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

< d b b d c a c >

cost: 4+3+1+2+4
Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
 - It only uses free exchanges.

\[
< d \ b \ b \ d \ c \ a \ c >
\]

Cost: \(4+3+1+2+4+4\)
Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
< d \ b \ b \ d \ c \ a \ c > \\
\text{cost: 4+3+1+2+4+4+2}
\]
Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

\[
< \text{d b b d c a c} >
\]

\[
\text{cost: } 4 + 3 + 1 + 2 + 4 + 4 + 2
\]
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

Do nothing if such an item y does not exist.

< d b b d c a c >

cost: 4
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

$\langle d\ b\ b\ d\ c\ a\ c \rangle$

\text{cost: } 4+2
Online Algorithms

After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

\[
< \text{d b b d c a c} > \\
\text{cost: } 4 + 2 + 2
\]
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

Do nothing if such an item y does not exist.

\[\langle d \ b \ b \ d \ c \ a \ c \rangle \]

cost: 4+2+2
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

$\langle d\ b\ b\ d\ c\ a\ c\ \rangle$

cost: $4+2+2+4$
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

\[
\langle d, b, b, d, c, a, c \rangle \\
\text{cost: } 4+2+2+4
\]
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

```
< d b b d c a c >
cost: 4+2+2+4+4
```
After an access to \(x \), move \(x \) to the front of the first item \(y \) which has been requested at most once since the last access to \(x \).

- Do nothing if such an item \(y \) does not exist.

\[
\langle d \ b \ b \ d \ c \ a \ c \rangle
\]

\text{cost:} \quad 4+2+2+4+4+3
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

Do nothing if such an item y does not exist.

$< d \ b \ b \ d \ c \ a \ c >$

Cost: $4+2+2+4+4+3+4$
After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.

- Do nothing if such an item y does not exist.

```
< d b b d c a c >
cost: 4+2+2+4+4+3+4
```
Online Algorithms

Optimal Static Algorithm

- Look at the sequence of requests, sort items by the frequency of their accesses.
 - The most accessed item will be at the beginning of the list.

The cost of the algorithm would be at most $nk/2$.

COMP 7720 - Online Algorithms

List Update & Compression
Online Algorithms

Optimal Static Algorithm

- Look at the sequence of requests, sort items by the frequency of their accesses.
 - The most accessed item will be at the beginning of the list.
- The cost of the algorithm would be at most $nk/2$.
Consider a **cruel** sequence in which the adversary always asks for the last item in the list!

What will be the cost of the algorithm?
Consider a **cruel** sequence in which the adversary always asks for the last item in the list!

What will be the cost of the algorithm?

- It will be nk.
Consider a **cruel** sequence in which the adversary always asks for the last item in the list!

What will be the cost of the algorithm?

- It will be \(nk \).

What is the cost of \(\text{OPT} \)?

- We know the optimal static algorithm has a cost of \(n(k + 1)/2 \).
- So the cost of \(\text{OPT} \) is no more than \(n(k + 1)/2 \).
Consider a **cruel** sequence in which the adversary always asks for the last item in the list!

What will be the cost of the algorithm?
- It will be nk.

What is the cost of OPT?
- We know the optimal static algorithm has a cost of $n(k + 1)/2$.
- So the cost of OPT is no more than $n(k + 1)/2$.

The competitive ratio of any online list update algorithm is at least
\[
\frac{nk}{nk/2} = 2.
\]
Competitiveness of MTF
On the Nature of Opt

- There is an optimal algorithm that only uses paid exchanges!
On the Nature of Opt

There is an optimal algorithm that only uses paid exchanges!

Assume OPT uses a free exchange after accessing item x at position i to move it closer to the front to position j

- The cost will be i.

![Diagram showing the movement of item x in a list with two access points at $i = 3$ and $i = 5$.]
There is an optimal algorithm that only uses paid exchanges!

Assume OPT uses a free exchange after accessing item x at position i to move it closer to the front to position j.

- The cost will be i.

In a new scheme, **before the access** apply $i - j$ paid exchanges to move i to position j.

- The new cost will be $i - j$ for paid exchanges and j for the access, which sums to i.
Theorem

Move-To-Front has competitive ratio of 2.

- We prove it through potential function method
 - And it takes a few slides :'-)
At a given time, two items \(x \) and \(y \) form an **inversion** if their relative order is different in the lists of MTF and OPT.

Question: what is the maximum number of inversions for a list of length \(k \)?

- (a) \(k/2 \)
- (c) \(k(k - 1)/2 \)
- (c) \(k \)
- (d) \(k^2 - k/2 \)
Competitiveness of MTF

Potential Function

- Assume MTF and OPT are running the same input in parallel.
- Assume we are at the t'th request, and there is a request to an item x.
- Define the potential at time t to be the total number of inversions before accessing x.

Inversions are (b, c), (b, d), (b, e), (c, d). So, $\Phi(t) = 4$.

COMP 7720 - Online Algorithms
List Update & Compression
Assume MTF and OPT are running the same input in parallel.

Assume we are at the t'th request, and there is a request to an item x.

Define the potential at time t to be the total number of inversions before accessing x.

Inversions are $(b, c), (b, d), (b, e), (c, d)$.

So, $\Phi(t) = 4$.

- Inversions are $(b, c), (b, d), (b, e), (c, d)$.
- So, $\Phi(t) = 4$.

COMP 7720 - Online Algorithms List Update & Compression
Intuitively, if we have a high potential, we are in bad state.

Amortized Cost

- Define the amortized cost at time t (when answering the tth request) as:
 \[
 \text{amortized cost}(t) = \text{actual cost}(t) + \Phi(t+1) - \Phi(t)
 \]

- Example: assume at time t, there is a request to b, and Opt does not rearrange the list for accessing t.
- For MTF, we have $\text{actual cost}(t) = 5$, $-\Phi(t) = 4$ and $\Phi(t+1) = 2$.
- Amortized cost is $5 + 2 - 4 = 3$.
Amortized Cost

- Intuitively, if we have a high potential, we are in bad state.
- Define the amortized cost at time t (when answering the tth request) as:

$$\text{amortized} _ \text{cost}(t) = \text{actual} _ \text{cost}(t) + \Phi(t+1) - \Phi(t)$$
Intuitively, if we have a high potential, we are in bad state.

Define the amortized cost at time t (when answering the tth request) as:

$$amortized_cost(t) = actual_cost(t) + \Phi(t + 1) - \Phi(t)$$

Example: assume at time t, there is a request to b, and OPT does not rearrange the list for accessing t.

![Diagram of MTF and Opt lists]

- List of MTF: $a \rightarrow d \rightarrow c \rightarrow e \rightarrow b$
- List of Opt: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
Amortized Cost

- Intuitively, if we have a high potential, we are in bad state.
- Define the **amortized cost** at time \(t \) (when answering the \(t \)th request) as:

\[
amortized_cost(t) = \text{actual_cost}(t) + \Phi(t + 1) - \Phi(t)
\]

- Example: assume at time \(t \), there is a request to \(b \), and \(\text{OPT} \) does not rearrange the list for accessing \(t \).

![Diagram of MTF and Opt lists](image)
Competitiveness of MTF

Amortized Cost

- Intuitively, if we have a high potential, we are in bad state.
- Define the **amortized cost** at time t (when answering the tth request) as:

 $$\text{amortized cost}(t) = \text{actual cost}(t) + \Phi(t + 1) - \Phi(t)$$

- Example: assume at time t, there is a request to b, and OPT does not rearrange the list for accessing t.
 - For MTF, we have $\text{actual cost}(t) = 5$, $-\Phi(t) = 4$ and $\Phi(t + 1) = 2$.
 - amortized cost is $5 + 2 - 4 = 3$.

\[\text{list of MTF} \begin{array}{cccc} t & a & d & c & e & b \end{array} \]

\[\begin{array}{cccc} t+1 & b & a & d & c & e \end{array} \]

\[\text{list of Opt} \begin{array}{cccc} t & a & b & c & d & e \end{array} \]

\[\begin{array}{cccc} t+1 & a & b & c & d & e \end{array} \]
Lemma

At any time t, $\text{amortized_cost}(t) \leq 2 \cdot \text{OPT}(t)$, i.e., the amortized cost of MTF for the t'th request is at most twice that of OPT.
How many inversions are removed by moving x to front?

- Before moving to front, there are $i-1$ items before x in MTF list.
- At most $j-1$ of them can also appear before x in OPT list (are non-inversions) \Rightarrow the rest, at least, $i-1-(j-1) = i-j$ are inversions \Rightarrow By moving to front at least $i-j$ inversions are removed.
How many inversions are added by moving x to front?

- x is in front of MTF list after the move and at position j of O^P's list
- items that appear after x in MTF and before x in O^P are at most $j - 1$
- At most $j - 1$ inversions are added
When moving x to front:

- Actual cost is i, at least $i - j$ inversions are removed, at most $j - 1$ inversions are added
Potential Function Method (cntd.)

When moving x to front:

- Actual cost is i, at least $i - j$ inversions are removed, at most $j - 1$ inversions are added.

Assume OPT makes k paid exchanges.

- Recall that it does no free exchange.
- The cost of OPT will be $j + k$.
- Each paid exchange increases potential by 1 \rightarrow potential increases by at most k.

\[\Phi(t + 1) - \Phi(t) = \text{added inversions} - \text{removed inversions} \leq (j + k - 1) - (i - j) = 2j + k - i - 1. \]

Amortized cost $= \text{actual cost} + \Phi(t + 1) - \Phi(t) \leq i + 2j + k - i - 1 = 2j + k - 1.$

Cost of OPT is $j + k$ and amortized cost is less than $2j + k$.

Lemma: At any time t, amortized cost $\Phi(t) < 2 \text{OPT}(t)$.

When moving x to front:
- Actual cost is i, at least $i - j$ inversions are removed, at most $j - 1$ inversions are added.

Assume OPT makes k paid exchanges.
- Recall that it does no free exchange.
- The cost of OPT will be $j + k$.
- Each paid exchange increases potential by 1 \rightarrow potential increases by at most k.

$$\Phi(t + 1) - \Phi(t) = \text{added inversions} - \text{removed inversions} \leq (j + k - 1) - (i - j) = 2j + k - i - 1.$$
Competitiveness of MTF

Potential Function Method (cntd.)

- When moving x to front:
 - Actual cost is i, at least $i - j$ inversions are removed, at most $j - 1$ inversions are added

- Assume OPT makes k paid exchanges.
 - Recall that it does no free exchange.
 - The cost of OPT will be $j + k$.
 - Each paid exchange increases potential by 1 \rightarrow potential increases by at most k.

- $\Phi(t + 1) - \Phi(t) = \text{added inversions} - \text{removed inversions} \leq (j + k - 1) - (i - j) = 2j + k - i - 1$.

- $\text{amortized cost} = \text{actual cost} + \Phi(t + 1) - \Phi(t) \leq i + 2j + k - i - 1 = 2j + k - 1$
Competitiveness of MTF

Potential Function Method (cntd.)

- When moving x to front:
 - Actual cost is i, at least $i - j$ inversions are removed, at most $j - 1$ inversions are added
- Assume OPT makes k paid exchanges.
 - Recall that it does no free exchange.
 - The cost of OPT will be $j + k$.
 - Each paid exchange increases potential by 1 → potential increases by at most k.

- $\Phi(t + 1) - \Phi(t) = \text{added inversions} - \text{removed inversions} \leq (j + k - 1) - (i - j) = 2j + k - i - 1$.
- $\text{amortized cost} = \text{actual cost} + \Phi(t + 1) - \Phi(t) \leq i + 2j + k - i - 1 = 2j + k - 1$
- Cost of Opt is $j + k$ and amortized cost is less than $2j + k$.

Lemma

At any time t, $\text{amortized cost}(t) < 2 \text{OPT}(t)$.
A quick example

Assume at time t:

- the list of MTF is

 $8 \to 7 \to 6 \to 5 \to 4 \to 3 \to 2 \to 1$

- the list of OPT is

 $1 \to 2 \to 3 \to 4 \to 5 \to 6 \to 7 \to 8$

Assume x is 3, which means $i = 6$ and $j = 3$.

The number of removed inversions in this case is at least $i - j = 3$. In fact, it turns out to be 5 because all $1, 2, 4, 5, 6, 7, 8$ form inversions with 3 which will be removed by moving 3 to the front.

The number of new inversions will be at most $j - 1 = 2$. In fact, it is 0 as no new inversion is added.
For the cost of MTF, we have

\[MTF = \text{actual}_\text{cost}(1) + \text{actual}_\text{cost}(2) + \ldots + \text{actual}_\text{cost}(n) \]
\[= (\text{actual}_\text{cost}(1) + \Phi(2) - \Phi(1)) \]
\[+ (\text{actual}_\text{cost}(2) + \Phi(3) - \Phi(2)) \]
\[+ \ldots \]
\[+ (\text{actual}_\text{cost}(n) + \Phi(n + 1) - \Phi(n)) - (\Phi(n + 1) - \Phi(1)) \]
\[= \text{amortized}_\text{cost}(1) + \ldots + \text{amortized}_\text{cost}(n) - (\Phi(n + 1) - \Phi(1)) \]
\[< 2 \text{Opt}(1) + \ldots + 2 \text{OPT}(n) - \mathcal{O}(L^2) \approx 2 \text{Cost}_\text{Opt}(n) \]

{recall that \(n \gg L \)}

Note that in the second line, we just added and removed values (i.e., we added \(\Phi(1) - \Phi(1) + \Phi(2) - \Phi(2) + \ldots + \Phi(n + 1) - \Phi(n + 1) = 0 \)).
Theorem

Competitive ratio of MTF is at most 2

- No deterministic algorithm can have a competitive ratio better than 2.
 - MTF is an optimal list-update algorithm.
 - Timestamp is another optimal deterministic algorithm.
Competitiveness of MTF

Theorem

Competitive ratio of MTF is at most 2

- No deterministic algorithm can have a competitive ratio better than 2.
 - MTF is an optimal list-update algorithm.
 - Timestamp is another optimal deterministic algorithm.
- Later, we will see randomized algorithms that achieve better competitive ratios.
Theorem

Competitive ratio of MTF is at most 2

- No deterministic algorithm can have a competitive ratio better than 2.
 - MTF is an optimal list-update algorithm.
 - Timestamp is another optimal deterministic algorithm.
- Later, we will see randomized algorithms that achieve better competitive ratios.
- Potential function method is a general framework for analysis of many online algorithms!
Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.

These states should be finite and independent of the input length!
Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.

- These states should be finite and independent of the input length!

Define a ‘potential’ as a function of the state of the algorithm and that of OPT (e.g. no. inversions).

- This is the critical part :-)}
Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.

- These states should be finite and independent of the input length!

Define a ‘potential’ as a function of the state of the algorithm and that of OPT (e.g. no. inversions).

- This is the critical part :-)

Define the amortized cost at a given time t as the actual cost algorithm plus the difference in potential after the request is served (same for all problems).
Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.

- These states should be finite and independent of the input length!

Define a ‘potential’ as a function of the state of the algorithm and that of OPT (e.g. no. inversions).

- This is the critical part :-)

Define the amortized cost at a given time t as the actual cost algorithm plus the difference in potential after the request is served (same for all problems).

The potential should be defined in a way so that you can show $\text{amortized_cost}(t) \leq c \text{OPT}(t)$.

Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.

- These states should be finite and independent of the input length!
- Define a ‘potential’ as a function of the state of the algorithm and that of \(\text{OPT} \) (e.g. no. inversions).
 - This is the critical part :-)
- Define the amortized cost at a given time \(t \) as the actual cost algorithm plus the difference in potential after the request is served (same for all problems).

The potential should be defined in a way so that you can show

\[
\text{amortized cost}(t) \leq c \text{OPT}(t).
\]

Using a telescopic sum, the competitive ratio will be at most \(c \) (same for all problems).
Competitiveness of MTF

Potential Function Method

Did we survive?
One important application of list update is in data compression.

Given a data-sequence (e.g., an English text), we want to compress it.

We should be able to recover the exact text from the compressed one.
MTF Example

Solution 1: write the ASCII or Unicode code for each character
MTF Example

- Solution 1: write the ASCII or Unicode code for each character
- Use MTF index to encode the characters

\[
S = \text{INEFFICIENCIES}
\]

\[
C = 8
\]
MTF Example

- Solution 1: write the ASCII or Unicode code for each character
- Use MTF index to encode the characters

\[S = \text{INEFFICIENCIES} \]
\[C = 8 \ 13 \]
Competitiveness of MTF

MTF Example

- Solution 1: write the ASCII or Unicode code for each character
- Use MTF index to encode the characters

\[S = \text{INEFFICIENCIES} \]

\[C = 8 \ 13 \ 6 \]
MTF Example

- Solution 1: write the ASCII or Unicode code for each character
- Use MTF index to encode the characters

\[S = \text{INEFFICIENCIES} \]
\[C = 8 \ 13 \ 6 \ 7 \]
MTF Example

- Solution 1: write the ASCII or Unicode code for each character
- Use MTF index to encode the characters

\[S = \text{INEFFICIENCIES} \]
\[C = 8 \ 13 \ 6 \ 7 \ 0 \]
MTF Example

- Solution 1: write the ASCII or Unicode code for each character
- Use MTF index to encode the characters

\[S = \text{INEFFICIENCIES} \]
\[C = 8 \ 13 \ 6 \ 7 \ 0 \ 3 \]
MTF Example

- Solution 1: write the ASCII or Unicode code for each character
- Use MTF index to encode the characters

\[
S = \text{INEFFICIENCIES}
\]

\[
C = 8\ 13\ 6\ 7\ 0\ 3\ 6
\]
MTF Example

- **Solution 1:** write the ASCII or Unicode code for each character
- **Use MTF index to encode the characters**

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| C | I | F | E | N | A | B | D | G | H | J | K | L | M | O | P | Q | R | S | T | U | V | W | X | Y | Z |

$$S = \text{INEFFICIENCIES}$$

$$C = 8\ 13\ 6\ 7\ 0\ 3\ 6\ 1$$
Competitiveness of MTF

MTF Example

- Solution 1: write the ASCII or Unicode code for each character
- Use MTF index to encode the characters

\[
\begin{align*}
S &= \text{INEFFICIENCIES} \\
C &= 8 13 6 7 0 3 6 1 3 4 3 3 3 18
\end{align*}
\]

- What does a run in \(S \) encode to in \(C \)?
- This results in good compression if we have high \textit{locality} in the input.
Increase locality using Burrows-Wheeler Transform!
Competitiveness of MTF

Burrows-Wheeler Transform

- Increase locality using Burrows-Wheeler Transform!

- How it works?
 - Create all rotations of a given sequence.
 - Sort those rotations into lexicographic order.
 - Take as output the last column!

Why it is useful?
- Creates output with high locality!
- This is reversible
Increase locality using Burrows-Wheeler Transform!

How it works?
- Create all rotations of a given sequence.
- Sort those rotations into lexicographic order.
- Take as output the last column!

Why it is useful?
- Creates output with high locality!
- This is reversible

BWT(banana) = annb$aa
Assume we want to compress a data sequence S:

- Apply BWT on S to increase its locality
Assume we want to compress a data sequence S:

- Apply BWT on S to increase its locality
- Apply MTF on BWT output and encode the indices in the list
 - You expect to see a lot of 1’s and 2’s.
Competitiveness of MTF

B-Zip2 compression scheme

- Assume we want to compress a data sequence S:
 - Apply BWT on S to increase its locality
 - Apply MTF on BWT output and encode the indices in the list
 - You expect to see a lot of 1’s and 2’s.
 - Use run-length encoding to store these indices
 - Write down the length of each run!
 - $\langle 1 \ 1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 1 \ 1 \ 4 \ 4 \ 4 \ 4 \ 4 \rangle \rightarrow \langle (1 \ 5) \ (2 \ 4) \ (1 \ 2) \ (4 \ 3) \rangle$
In the next class, we see how advice can potentially improve this competitive scheme!