COMP 4060/7720 - Online Algorithms

Paging and k-Server Problem

Shahin Kamali

k-server Problem

University of Manitoba
k-sever problem

- A metric is a set of points with a **distance** between each of pairs so that \(d(x, y) \leq d(x, z) + d(z, y) \).
 - E.g., a connected, undirected graph or a set of points in plane
- We have a metric space of size \(m \)
 - \(k < m \) servers in the graph
- A sequence of \(n \) requests to the vertices of the graph
 - Each request should be served by a server
 - Requests appear in an online manner
- Minimize the total distance moved by servers

\[
\sigma = < S \ M \ K \ A \ D \ B \ D \ B \ D > \\
\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
\]
The k-server Problem

- What happens if we have a complete graph (a **uniform** metric)?
 - If there is a request to a vertex at which a server is located → there is no cost; otherwise, there is a cost of 1 to move a server to requested vertex.
 - Think of vertices as pages; vertices with servers on them are pages in the cache → caching problem.

- Recall that for caching problem, we have:

 Theorem

 No deterministic algorithm can achieve a competitive ratio better than k, and LRU and FIFO achieve this ratio.
 No randomized algorithm can achieve a competitive ratio that is asymptotically better than $\Theta(\log k)$ and Mark algorithm achieves this.

- k-server problem has the **right level of difficulty** compared to paging (which is ‘too easy’) and Metrical Task Systems (another problem which is ‘too hard’).
Greedy Algorithm

- Move the closest server to serve each request.
- Is Greedy a good algorithm?
 - what about the input $\sigma = \langle B \ R \ B \ R \ldots \rangle$?
 - For n requests, greedy incurs a cost of n
 - OPT moves another server from M to T at a cost of 3 and incurs no cost.
 - Competitive ratio will be at least $\frac{n}{3}$ for this graph!
Greedy Algorithm

Theorem

For any graph of diameter \(d \), the competitive ratio of greedy is at least \(\frac{n}{2d} \).

- It holds for any graph, even a path!
- Consider two vertices \(A \) and \(B \) which are close to one server and further from other servers.
 - Greedy servers sequence \(\langle A \ B \ A \ B \ \ldots \rangle \) by one server
Lower Bound for Deterministic Algs

Theorem

For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

proof:

- Consider any connected subgraph of G on $k + 1$ vertices.
- Create an adversarial sequence σ where the adversary always asks for the node at which Alg has no server.
 - Assume the cost of Alg is C for σ
- We show there are k offline algorithms so that the summations of the costs of all these algorithms is roughly C
 - At least one of them has cost C/k
 - The competitive ratio of Alg will be at least $\frac{C}{C/k} = k$.

COMP 4060/7720 - Online Algorithms Paging and k-Server Problem
Lower Bound for Deterministic Algs

- Alg and the \(k \) offline algorithms always have different configurations.
- On each request, Alg has to move a server, while all offline algorithms have a ‘hit’.
- when Alg makes a move, exactly one offline algorithm uses the reverse move (to maintain different configurations).

\[\sigma : \quad A \ D \ F \ G \ C \]

Algorithm:

\[
\begin{align*}
D & \rightarrow A \\
F & \rightarrow D \\
G & \rightarrow F \\
C & \rightarrow G \\
A & \rightarrow C
\end{align*}
\]

Offline algorithms:

\[
\begin{align*}
\text{off3:} & \quad A \rightarrow D \\
\text{off2:} & \quad D \rightarrow F \\
\text{off1:} & \quad F \rightarrow G \\
\text{off4:} & \quad G \rightarrow C
\end{align*}
\]
Lower Bound for Deterministic Algs

- At each given time, exactly one offline algorithm moves a server.
- The offline algorithm that moves a server, uses the reverse move so that all algorithms maintain different configurations.
- The cost of all offline algorithms is roughly equal to Alg
 - They pay a bit more to move servers to form the initial configuration at the beginning.
- Offline algorithms fail the online algorithm by emulating it!
k-server Conjecture

Conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

- k-server conjecture is one of the big open problems in the context of online algorithms.
 - Verified when $k = 2$, $m = k + 1$, $m = k + 2$, and trees.
Double Coverage Algorithm (DCA) for Paths

On a request to x:

- Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
- If there is no server on left (or right), just move the closest server!

Cost: $4 + 2 + 1 + 2$
Double Coverage Algorithm for Paths (cntd.)

Theorem

The double coverage algorithm (DCA) has a competitive ratio of k for paths.

- So, it is the optimal deterministic algorithm for paths.
- For the proof, we use the potential function method :)}
Potential Function Method Review

1. Define the potential as a function of the states of A and OPT at time t (before serving the t'th request).

2. Define the amortized cost at time t as the summation of the actual cost and the difference in potential before and after serving the t'th request, i.e., $amortized_cost(t) = actual_cost(t) + \Phi(t+1) - \Phi(t)$.

3. Assuming the potential is defined properly, we should be able to show $amortized_cost(t) \leq c \cdot OPT(t)$,
Potential Function Method Steps

- Define the potential
- Find the followings for any timestep t:
 - The cost of Opt $\Rightarrow cost(opt)$ (usually a variable j).
 - How the actions of Opt changes potential $\Rightarrow \Delta_{opt} \Phi$
 - The actual cost of the algorithm
 - How the actions of alg changes potential $\Rightarrow \Delta_{alg} \Phi$

- The amortized cost is:
 $amortized_cost = actual_cost + \Delta \Phi = actual_cost + \Delta_{opt} \Phi + \Delta_{alg} \Phi$

- For a competitive ratio of c we should have:
 $actual_cost + \Delta_{opt} \Phi + \Delta_{alg} \Phi \leq c \cdot cost(opt)$

- For example, for MTF (list update) we had $actual_cost = i$, $cost_{opt} = j + k$, $\Delta_{Opt} \Phi \leq k$, $\Delta_{MTF} \Phi \leq -i + 2j$.
 - Amortize$_{cost} \leq i + k + (-i + 2j) = 2j + k$, which is no more than $2 \cdot (j + k)$
Potential for DCA

- At any given time, for any serve s_i, let $p(s_i)$ be the distance between the location of s_i in DCA configuration and the location of s_i in OPT’s configuration.
- Define $P = k \times (p(s_1) + p(s_2) + \ldots + p(s_k))$
 - We consider P as the first component in potential

\[
p(1) = 0,\; p(2) = 1,\; p(3) = 2,\; P(4) = 2,\; p(5) = 2
\]

\[
P = 5 \times (0 + 1 + 2 + 2 + 2) = 35
\]
For the second component, for any pair \(s_i, s_j \) of servers, let \(q(s_i, s_j) \) be the distance between the location of \(s_i \) and \(s_j \) in DCA configuration.

Define \(Q = \sum_{i \neq j} q(s_i, s_j) \)

- the closer the servers are \(\rightarrow \) the lower the potential

\[
q(1, 2) = 2, \ q(1, 3) = 7, \ q(1, 4) = 8, \ q(1, 5) = 10, \ q(2, 3) = 5 \\
q(2, 4) = 6, \ q(2, 5) = 8, \ q(3, 4) = 1, \ q(3, 5) = 3, \ q(4, 5) = 2
\]

\[
Q = 2 + 7 + 8 + 10 + 5 + 6 + 8 + 1 + 3 + 2 = 52
\]
The potential at time t is $\Phi = P + Q$, the summation of the two components.

- So, the potential is now defined :)
Potential function method for DCA

- Assume Opt moves a server s for j units for a request.
 - The cost of opt is j

- How does the first component P of the potential change?
 - The distance between the location of s in configuration of Opt and DCA is increased by at most j
 - For other servers P does not change!
 - So, P increases by at most $k \cdot j$

- How does the second component Q change?
 - It does not change! (Q depends on configuration of DCA)

\[
\text{cost}_{\text{opt}} = j \\
\Delta_{\text{Opt}} \Phi \leq k \cdot j
\]
Case 1: DCA moves only one server \(w \) a distance \(d \).
- Happens when there is no server on left (or right)
- The actual cost of DCA is \(d \).

How does the first component \(P \) of the potential change?
- The distance between the location of \(w \) in configuration of Opt and DCA is decreased by exactly \(d \).
- \(P \) is increased by \(-kd \)

How does the second component \(Q \) change?
- Distance of \(w \) with any other vertex is increased by \(d \)
- \(Q \) is increased by \((k - 1) \cdot d\)

\[
\text{cost}_{\text{opt}} = j\]
\[
\Delta_{\text{Opt}} \Phi \leq k \cdot j
\]
\[
\text{actual_cost} = ?
\]
\[
\text{actual_cost} = d
\]
\[
\Delta_{\text{DCA}} \Phi = ?
\]
\[
\Delta_{\text{DCA}} \Phi = -kd + (k - 1)d = -d
\]

amortized_cost = \[
d + (kj - d) = kj = k \cdot \text{cost}_{\text{opt}}
\]
Case 2: DCA moves two server \(L \) and \(R \) a distance \(d \).

- There is one server on each side of the request
- The actual cost of DCA is \(2d \).

How does the first component \(P \) of the potential change?

- The distance between the location \(R \) in configuration of Opt and DCA is decreased by \(d \) while the distance of the \(L \) is increased by at most \(d \).
- \(P \) is increased by at most \(0 \).

How does the second component \(Q \) change?

- For any server \(z \), \(q(z, L) + q(z, R) \) is unchanged.
- \(q(L, R) \) is decreased by \(2d \) \(\Rightarrow \) \(Q \) is increased by \(-2d\)

\[
\begin{align*}
\text{actual_cost} &= 2d \\
\Delta_{DCA} \Phi &= 0 + (-2d) = -2d \\
\text{amortized_cost} &\leq 2d + (kj - 2d) = kj = k \cdot \text{cost_opt}
\end{align*}
\]
Potential function method for DCA

Theorem

The Double Coverage Algorithm has a competitive ratio of k *for paths.*

- And this is the best deterministic algorithm for paths (why?)
- The algorithm can be extended to trees!
Lazy Algorithms

- An algorithm is called **lazy** if it moves at most one server to serve each request.

- Is DCA a lazy algorithm?
 - No, it might move two servers.
Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.

A' saved a distance of 2 on moves of server 3!
Double Coverage Algorithm for Trees

- Move servers that have no other serve between them and the request
 - Move servers with equal speed to the requested sequence
 - Stop when any server arrives to the requested vertex

Theorem

Double-Coverage algorithm (DCA) has a competitive ratio of k for trees.

- Similar potential & proof as in paths!
- The k-server conjecture is true (via DCA) for paths & trees
Revisiting Paging

- Recall that k-server becomes equal to caching problem when the metric is uniform
 - When distance between vertices associated with pages (yellow vertices) is the same.
- We can embed a complete graph into a star tree
 - So that the distances remain the same between pages (yellow vertices)
- What is the double-coverage algorithm for star? (paging)
 - It will be Flash-When-Full (FWF)
 - Another proof that FWF has competitive ratio k.
 - Note that FWF can be implemented in a lazy fashion!
Double Coverage Algorithm for $k = 2$

- When we have $k = 2$, we can use a version of double-coverage algorithm.
- On a request to x, consider a ‘red spider’ that embeds shortest distances of servers and request.
- Apply DCA using the red spider (move servers on the star edges).
- In reality, we cannot move on the star (since it is not a part of graph).
 - Use a lazy variant; star positions are virtual positions; in reality only one server is moved.
Double Coverage Algorithm (DCA) for \(k = 2 \) & \(k = 3 \)

- Why DCA has a competitive ratio of \(k \) when \(k = 2 \) and unbounded competitive ratio for \(k = 3 \)? (intuition)
- When \(k = 2 \), the triangle formed by the two servers & the requested node can be embedded into a tree.
- When \(k = 3 \), the graph formed by the three vertices & the requested node cannot be necessarily embedded into a tree.
 - E.g., a cycle cannot be embedded into a tree.

![Diagram of triangle and square with labels and calculations](image)
Double Coverage Algorithm (DCA) Summary

- DCA is k-competitive (optimal) for paths, trees, and any metric that can be embedded in trees (e.g., complete graph).
- DCA is k-competitive (optimal) for $k = 2$.
- DCA is not useful for $k \geq 3$ even if the metric is a cycle.
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers

- Is it a good algorithm?
 - For n requests, $\text{cost}(\text{Balance}) = n \cdot d$
 - $\text{cost}(\text{OPT}) = d + n$ (why?)
 - The competitive ratio of the Balance algorithm is at least $\frac{nd}{n+d} \approx d$, which is much more than the optimal ratio of $k = 2$.

- Balance is k-competitive for metrics with $k + 1$ nodes

\[
\sigma = (D \ C \ B \ A)^n
\]
Randomized algorithms

- Compare against *oblivious adversary*
 - For any metric space, no algorithm can be better than $\log k$ competitive
- Randomized k-server conjecture
 - For any metric space there is a randomized $\log k$-competitive algorithm
- Verified for hierarchical binary trees
- For general graphs, there is a $O(\log^3 m \log^2 k)$-competitive graph
 - Better than $2k - 1$ when m is sub-exponential of k
Randomized Algorithm CIRC for Cycle

- Select a point P, uniformly at random, from the cycle of length C.
 - Think of P as a ‘road-block’ and apply DCA for the resulting segment L
 - This selection of P is equivalent to deletion of a random edge from the cycle

Theorem

CIRC is a 2k-competitive algorithm for cycle

- Observation: P appears in the shortest path between (A, B) with probability $d(A, B)/C$.

![Diagram of cycle with points A, B, and P]
Let OPT-Line be the optimal offline algorithm when restricted to L.

We have $Cost(CIRC) \leq k \cdot Cost(OPT-Line)$ (double-coverage algorithm on line).

$Cost(OPT-Line) \leq 2Cost(OPT)$

1. Assume OPT makes moves of lengths d_1, d_2, \ldots, d_n

 $cost(opt) = d_1 + d_2 + \ldots + d_n$

2. Apply the same moves as OPT; with additional penalty of at most C if a server passes P (the penalty means you go all the way through other side).

 The chance of passing P on a move of length d_i is d_i / C.

 - The whole penalty is expected to be at most $d_1 / C \cdot C + d_2 / C \cdot C + \ldots + d_n / C \cdot C = Cost(OPT)$.

 - The expected cost of OPT-Line is at most $d_1 + d_2 + \ldots + d_n + Cost(OPT) = 2Cost(OPT)$.
Randomized Algorithm CIRC for Cycle

- In summary, we have \(\text{cost}(\text{CIRC}) \leq k \cdot \text{cost}(\text{OPT-Line}) \) and \(\text{cost}(\text{OPT-Line}) \leq 2\text{cost}(\text{OPT}) \).

Theorem

\textit{CIRC is a 2k-competitive algorithm for cycle}

- Is it good?
 - Yes (it is the best existing algorithm) and No (we hope to get something around \(\log k \)).
 - Deterministic k-server conjecture is still open for cycles.

- Here, we reduced a cycle to a line segment

- This type of reduction is the main tool for analysis of randomized k-server
 - Reduce an arbitrary graph to a ‘hierarchical binary tree’