Introduction
In a Glance . . .

Online algorithms are

- Practical
- Diverse
- Fun (really!)
Online algorithms are

- Practical
- Diverse
- Fun (really!)

Let’s ‘play’ with online algorithms and enjoy
Introduction

Instructor

- B.Sc. in Computer Science (2002-2006)
 - University of Tehran (Iran)
Instructor

- **B.Sc. in Computer Science (2002-2006)**
 - University of Tehran (Iran)
- **M.Sc. in Computer Science (2006-2008)**
 - Concordia University (Canada)
Introduction

Instructor

- B.Sc. in Computer Science (2002-2006)
 - University of Tehran (Iran)
- M.Sc. in Computer Science (2006-2008)
 - Concordia University (Canada)
- PhD in Computer Science (2008-2014)
 - University of Waterloo (Canada)
Introduction

Instructor

- B.Sc. in Computer Science (2002-2006)
 - University of Tehran (Iran)
- M.Sc. in Computer Science (2006-2008)
 - Concordia University (Canada)
- PhD in Computer Science (2008-2014)
 - University of Waterloo (Canada)
 - LIAFA, Paris (France)
Introduction

Instructor

- B.Sc. in Computer Science (2002-2006)
 - University of Tehran (Iran)
- M.Sc. in Computer Science (2006-2008)
 - Concordia University (Canada)
- PhD in Computer Science (2008-2014)
 - University of Waterloo (Canada)
 - LIAFA, Paris (France)
- Postdoctoral Fellow, Associate (2015-2017)
 - MIT (USA)
Students

Your turn to ...

- Introduce yourself.
- Your research group, research interests.
- What makes you interested in this course?
Formalities
Formalities

Logistics

- Lecture: Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Rm: 360 (Sep 07, 2017 - Dec 08, 2017)

Piazza: https://piazza.com/umanitoba.ca/fall2017/comp7720
Office hours: 11:30 am-12:30 pm, Tuesdays and Thursdays, in E2 586 or by appointment
Formalities

Logistics

- Lecture: Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Rm: 360 (Sep 07, 2017 - Dec 08, 2017)
Formalities

Logistics

- Lecture: Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Rm: 360 (Sep 07, 2017 - Dec 08, 2017)

Formalities

Logistics

- Lecture: Tuesdays and Thursdays, 10:00-11:15am
 EITC E2 Rm: 360 (Sep 07, 2017 - Dec 08, 2017)
- Piazza: https://piazza.com/umanitoba.ca/fall2017/comp7720
Lecture: Tuesdays and Thursdays, 10:00-11:15am
EITC E2 Rm: 360 (Sep 07, 2017 - Dec 08, 2017)

Piazza: https://piazza.com/umanitoba.ca/fall2017/comp7720

Office hours: 11:30 am-12:30 pm, Tuesdays and Thursdays, in E2 586 or by appointment
Formalities

Textbook

- A list of required reading will be provided on the course webpage
- No book is required to be purchased.
- The following book is suggested as a reference:
 - Borodin and El-Yaniv, Online Computation and Competitive Analysis (2005)
Formalities

Grading

- There will be:
 - Four assignments
 - A final exam
 - A course project
Formalities

Grading

There will be:

- Four assignments
- A final exam
- A course project

Theorem

The focus of this course is on learning, discovering, and research.
Formalities

Grading

- There will be:
 - Four assignments
 - A final exam
 - A course project

Theorem

The focus of this course is on learning, discovering, and research.

Corollary

Don’t worry about your final mark.
Formalities

Grading (cntd.)

- **Four assignments:**
 - 30 percent of the final mark
 - 10 percent extra for bonus questions.
 - submit only pdf files (preferably use \LaTeX)
Four assignments:
- 30 percent of the final mark
- 10 percent extra for bonus questions.
- Submit only pdf files (preferably use LaTeX)

Final exam:
- 30 percent of the final mark
- 5 percent extra for bonus questions.
- It is a closed-book exam.
- A sample exam will be provided for practice
Formalities

Projects

- Course project
 - 40 percent of the final mark
 - 20 percent extra for outstanding projects (publishable projects)
 - Work individually or in groups of two

- Projects involve:
 - Proposal
 - Presentation
 - Final report (in form of a research paper)
Formalities

Projects (cntd.)

- Project topics will be suggested in the first few weeks of the class
 - You can choose your own topic based on your research
 - Come to office hours to talk about it!
Projects (cntd.)

- Project topics will be suggested in the first few weeks of the class
 - You can chose your own topic based on your research
 - Come to office hours to talk about it!
- Project categories:
 - Exploring possible solutions to an open problem
 - Writing a survey paper on a current topic related to online algorithms
 - Writing code to implement and compare the performance of online algorithms for a problem
Important Dates (tentative)

September 21: **assignment 1** due
September 28: **project proposal** due
October 12: **assignment 2** due
October 26: **assignment 3** due
November 16: **assignment 4** due
November 17: **VW deadline**
November 23: **Project presentation** starts
December 7: **last class**
December 7: **project final report** due
December 14: **final exam**
Online Algorithms
Online Algorithms

Offline vs. Online Algorithms

- Traditional algorithms are ‘offline’ in the sense that they have the whole input in their hand.

- Online algorithms, in contrast, do not have/need the whole input in order to solve a problem
 - The input is a ‘sequence’ which is processed by the online algorithm piece-by-piece
 - The online algorithms often take irrevocable decisions to process the input.
Bin Packing Problem

- The input is a set/sequence of items of various sizes
 - E.g., \(<9, 3, 8, 5, 1, 1, 3, 2, 4, 2, 4, 5, 5, 8, 6, 4, 5, \ldots > \).
Online Algorithms

Bin Packing Problem

- The input is a set/sequence of items of various sizes
- E.g., < 9, 3, 8, 5, 1, 1, 3, 2, 4, 2, 4, 5, 5, 8, 6, 4, 5, ... >.
- The goal is to pack these items into a minimum number of bins of uniform capacity.
In the online setting:

- an algorithm receives items one by one
- when it receives an item, it has to place it in a bin without any knowledge about forthcoming items
- decisions of the algorithms are irrevocable (i.e., cannot move items between bins)
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

![Diagram of bins and items]
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

\[< 9 \ 3 \ 8 \ 5 \ 1 \ 1 \ 3 \ 2 \ 4 \ 2 \ 4 \ 5 \ 5 \ 8 \ 6 \ 4 \ 5 >\]
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

\[
\langle 9\ 3\ 8\ 5\ 1\ 1\ 3\ 2\ 4\ 2\ 4\ 5\ 5\ 8\ 6\ 4\ 5 \rangle
\]

Diagram:

- Bin 1: 9
- Bin 2: 3 + 5
- Bin 3: 8 + 4
- Bin 4: 3
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

Diagram showing the allocation of items to bins.
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there.
- Open a new bin if such bin does not exist.

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Online Algorithms

Competitive Ratio

We use the framework of competitive analysis to compare online algorithms.
Online Algorithms

Competitive Ratio

- We use the framework of competitive analysis to compare online algorithms.
- Let OPT denote the best possible offline solution.
 - Given a sequence σ, OPT is an algorithm which packs items in σ in a minimum number of bins.
We use the framework of **competitive analysis** to compare online algorithms.

Let OPT denote the best possible offline solution. Given a sequence σ, OPT is an algorithm which packs items in σ in a minimum number of bins.

Competitive ratio of an algorithm A is the maximum ratio between the cost of A and that of OPT over all sequences:

$$cr(A) \equiv \max_\sigma \frac{\text{cost}_A(\sigma)}{\text{cost}_{\text{OPT}}(\sigma)}$$
For First Fit, the competitive ratio is 1.7 [Johnson 1973]
For First Fit, the competitive ratio is 1.7 [Johnson 1973]

- The number of bins opened by FF for any sequence is at most 1.7 times that of Opt, i.e., \(c.r. \leq 1.7 \) (upper bound for FF)
- There are sequences for which the number of bins opened by FF is 1.7 times that of Opt, i.e., \(c.r. \geq 1.7 \) (lower bound for FF)
Online Algorithms

Competitive Ratio of First Fit

- For First Fit, the competitive ratio is 1.7 [Johnson 1973]
 - The number of bins opened by FF for any sequence is at most 1.7 times that of OPT, i.e., c.r. ≤ 1.7 (upper bound for FF)
 - There are sequences for which the number of bins opened by FF is 1.7 times that of OPT, i.e., c.r. ≥ 1.7 (lower bound for FF)
- The best existing online algorithm has c.r. of 1.588 [Heydrich, van Stee 2017]
For First Fit, the competitive ratio is 1.7 [Johnson 1973]

- The number of bins opened by FF for any sequence is at most 1.7 times that of Opt, i.e., \(c.r. \leq 1.7 \) (upper bound for FF)
- There are sequences for which the number of bins opened by FF is 1.7 times that of Opt, i.e., \(c.r. \geq 1.7 \) (lower bound for FF)

- The best existing online algorithm has c.r. of 1.588 [Heydrich, van Stee 2017]
- No algorithm can be better than 1.54037-competitive (best general lower bound) [Balogh et al. 2015].
Ski-rental Problem

- Assume you want to go skiing for \(x \) number of days
 - In the online setting, the value of \(x \) is unknown!
Ski-rental Problem

- Assume you want to go skiing for x number of days
 - In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day
Assume you want to go skiing for x number of days

- In the online setting, the value of x is unknown!

You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day

If we know x, what is the best solution?
Online Algorithms

Ski-rental Problem

- Assume you want to go skiing for \(x \) number of days
 - In the online setting, the value of \(x \) is unknown!
- You can buy the equipment for a one-time cost of \(b \) or rent each day for a cost of 1 per day
- If we know \(x \), what is the best solution?
 - Buy at the beginning if \(x \geq b \), otherwise, rent every day
Online strategy **break-even**: rent for the first $b - 1$ days and buy in the next day.

What is the competitive ratio of Break-even algorithm?

Theorem

Competitive ratio is roughly 2, and it is the best for any deterministic online algorithm.
Online strategy **break-even**: rent for the first $b - 1$ days and buy in the next day.

What is the competitive ratio of Break-even algorithm?
Online strategy **break-even**: rent for the first \(b - 1 \) days and buy in the next day.

What is the competitive ratio of Break-even algorithm?

Theorem

Competitive ratio is roughly 2, and it is the best for any deterministic online algorithm.
Syllabus
In many occasions, a ‘doubling technique’ can be used to design and analyze online algorithms

- The lost cow problem
- Online bidding
Potential function technique is a classic approach for analysis of online problems

- The paging problem, Sleator-Tarjan proof, randomized paging
Syllabus

Data structures

- Self-adjusting data structures
 - List update problem
 - data compression
 - self-adjusting binary trees, and dynamic optimality conjecture
Syllabus

Packing problems

- Weighting technique
 - Bin packing
 - Renting servers in the cloud
 - Online scheduling
Graph problems

- k-server problem
- Graph coloring
- Bipartite matching
Syllabus

Computation geometry

- Robot searching
- 2-dimensional bin packing
Advice complexity of online problems

- Online algorithms with Advice: what if we have partial information about future?
 - Algorithms with advice for paging, bin packing, list update
- Many project ideas here!
Competitive ratio is a **worst-case measure**

Alternative analysis techniques are used to compare algorithms based on their typical behaviour

- Bijective analysis
- Relative worst-order analysis