Review & Plan

COMP 7720 - Online Algorithms

Paging and k-Server Problem
Today’s objectives

- *k*-server problem
 - Paths & trees
 - Balancing algorithms
 - Offline algorithms
 - Work-function algorithm
k-Server Problem
Introduction

k-sever problem

We have a metric space of size m and server problem. Each request should be served by a server. Minimize the total distance moved by servers.

$\sigma = <S, M, K, A, D, B, D, B, D>$

$\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1$
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph

\[
\sigma = < S \ M \ K \ A \ D \ B \ D \ B \ D >
\]
\[
costs = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
\]
Introduction

k-server problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server

\[\sigma = < S \ M \ K \ A \ D \ B \ D \ B \ D > \]
\[\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \]
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

\[
\sigma = \langle S, M, K, A, D, B, D, B, D \rangle
\]

\[
\text{costs} = \langle 2, 0, 2, 1, 1, 1, 1, 1, 1 \rangle
\]
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

![Diagram of a graph with vertices labeled A to L and edges connecting them. The vertices are connected in a way that resembles a tree structure.]

\[
\sigma = <S, M, K, A, D, B, D, B, D> \\
costs = 2, 0, 2, 1, 1, 1, 1, 1, 1
\]
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

\[
\sigma = < S, M, K, A, D, B, D, B, D >
\]
\[
\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1
\]
Introduction

\textbf{k-sever problem}

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

\begin{align*}
\sigma &= < S, M, K, A, D, B, B, D > \\
\text{costs} &= 2, 0, 2, 1, 1, 1, 1, 1, 1
\end{align*}
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

\[
\sigma = < S \ M \ K \ A \ D \ B \ D \ B \ D >
\]
\[
\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
\]
We have a metric space of size m

- $k < m$ servers in the graph

A sequence of n requests to the vertices of the graph

- Each request should be served by a server

Minimize the total distance moved by servers

$$\sigma = < S \ M \ K \ A \ D \ B \ D \ B \ D >$$

Costs: $2\ 0\ 2\ 1\ 1\ 1\ 1\ 1\ 1$
We have a metric space of size m

- $k < m$ servers in the graph

A sequence of n requests to the vertices of the graph

- Each request should be served by a server

Minimize the total distance moved by servers
We have a metric space of size m
- $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

$\sigma = < S \ M \ K \ A \ D \ B \ D \ B \ D >$

$\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$
We have a metric space of size m

- $k < m$ servers in the graph

A sequence of n requests to the vertices of the graph

- Each request should be served by a server

Minimize the total distance moved by servers

\[\sigma = \langle S, M, K, A, D, B, D, B, D \rangle \]
\[\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1 \]
k-server problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

\[
\sigma = \langle S, M, K, A, D, B, D, B, D \rangle \\
\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1
\]
Theorem

For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.
Introduction

Major Results

Theorem

For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

Conjecture

Conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

k-server conjecture is one of the big open problems in the context of online algorithms.
Introduction

Major Results

Theorem

For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

Conjecture

Conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

k-server conjecture is one of the big open problems in the context of online algorithms.

- Verified for $k = 2$, $m = k + 1$, $m = k + 2$, paths and trees.
Double Coverage Algorithm (DCA) for Paths

On a request to x:

- Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
 - If there is no server on left (or right), just move the closest server!

Cost:
Double Coverage Algorithm (DCA) for Paths

- On a request to x:
 - Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
 - If there is no server on left (or right), just move the closest server!

Cost: 4
Double Coverage Algorithm (DCA) for Paths

- On a request to x:
 - Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
 - If there is no server on left (or right), just move the closest server!

Cost: 4
Double Coverage Algorithm (DCA) for Paths

On a request to x:
- Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
- If there is no server on left (or right), just move the closest server!

Cost: $4 + 2$
On a request to x:

- Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
 - If there is no server on left (or right), just move the closest server!

Cost: $4 + 2$
Double Coverage Algorithm (DCA) for Paths

On a request to \(x \):
- Move the closest server on left and closest server on right at the same ‘speed’ toward \(x \) until one meets \(x \).
 - If the closest server is at distance \(d \), the algorithm incurs a cost of \(2d \).
- If there is no server on left (or right), just move the closest server!

Cost: \[4 + 2 + 1 \]
Double Coverage Algorithm (DCA) for Paths

- On a request to x:
 - Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
 - If there is no server on left (or right), just move the closest server!

Cost: $4 + 2 + 1$
Introduction

Double Coverage Algorithm (DCA) for Paths

On a request to \(x \):

- Move the closest server on left and closest server on right at the same ‘speed’ toward \(x \) until one meets \(x \).
 - If the closest server is at distance \(d \), the algorithm incurs a cost of \(2d \).
- If there is no server on left (or right), just move the closest server!

Cost: \(4 + 2 + 1 + 2 \)
Double Coverage Algorithm (DCA) for Paths

On a request to x:

- Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
 - If there is no server on left (or right), just move the closest server!

Cost: $4 + 2 + 1 + 2$
Theorem

The double coverage algorithm (DCA) has a competitive ratio of k for paths.

- So, it is the optimal deterministic algorithm for paths.
- For the proof, we used the potential function method 😊
An algorithm is called **lazy** if it moves at most one server to serve each request.

Is DCA a lazy algorithm?
Lazy Algorithms

An algorithm is called lazy if it moves at most one server to serve each request.

Is DCA a lazy algorithm?

No, it might move two servers.
Lazy Algorithms

Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.
Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.
Lazy Algorithms

Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.
Lazy Algorithms

Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.
Lazy Algorithms

Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.
Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.
Introduction

Lazy Algorithms

Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.
Lazy Algorithms

Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.

A' saved a distance of 2 on moves of server 3!
Introduction

Double Coverage Algorithm for Trees

- Move servers that have no other serve between them and the request
 - Move servers with equal speed to the requested sequence
 - Stop when any server arrives to the requested vertex
Double Coverage Algorithm for Trees

- Move servers that have no other serve between them and the request
 - Move servers with equal speed to the requested sequence
 - Stop when any server arrives to the requested vertex
Double Coverage Algorithm for Trees

- Move servers that have no other server between them and the request
 - Move servers with equal speed to the requested sequence
 - Stop when any server arrives to the requested vertex
Introduction

Double Coverage Algorithm for Trees

- Move servers that have no other serve between them and the request
 - Move servers with equal speed to the requested sequence
 - Stop when any server arrives to the requested vertex
Introduction

Double Coverage Algorithm for Trees

- Move servers that have no other serve between them and the request
 - Move servers with equal speed to the requested sequence
 - Stop when any server arrives to the requested vertex
Double Coverage Algorithm for Trees

- Move servers that have no other serve between them and the request
 - Move servers with equal speed to the requested sequence
 - Stop when any server arrives to the requested vertex

Theorem

Double-Coverage algorithm (DCA) has a competitive ratio of k for trees.

- Same potential & proof as in paths!
- The k-server conjecture is true (via DCA) for paths & trees
Recall that k-server becomes equal to caching problem when the metric is \textit{uniform}.

When distance between vertices associated with pages (yellow vertices) is the same.
Introduction

Revisiting Paging

- Recall that k-server becomes equal to caching problem when the metric is uniform
 - When distance between vertices associated with pages (yellow vertices) is the same.
- We can embed a complete graph into a star tree
 - So that the distances remain the same between pages (yellow vertices)

What is the double-coverage algorithm for star?

- It will be Flash-When-Full (FWF)
- Another proof that FWF has competitive ratio k.
- Note that FWF can be implemented in a lazy fashion!
Recall that \(k \)-server becomes equal to caching problem when the metric is \textit{uniform}.

- When distance between vertices associated with pages (yellow vertices) is the same.

- We can \textit{embed} a complete graph into a \textit{star tree}.
 - So that the distances remain the same between pages (yellow vertices).

- What is the double-coverage algorithm for star? (paging)
Recall that k-server becomes equal to caching problem when the metric is uniform. When distance between vertices associated with pages (yellow vertices) is the same.

We can embed a complete graph into a star tree so that the distances remain the same between pages (yellow vertices).

What is the double-coverage algorithm for star? (paging)
Recall that k-server becomes equal to caching problem when the metric is uniform.

- When distance between vertices associated with pages (yellow vertices) is the same.

We can embed a complete graph into a star tree.

- So that the distances remain the same between pages (yellow vertices).

What is the double-coverage algorithm for star? (paging)
Recall that k-server becomes equal to caching problem when the metric is uniform when distance between vertices associated with pages (yellow vertices) is the same.

We can embed a complete graph into a star tree so that the distances remain the same between pages (yellow vertices).

What is the double-coverage algorithm for star? (paging)
Recall that k-server becomes equal to caching problem when the metric is uniform. When distance between vertices associated with pages (yellow vertices) is the same.

We can embed a complete graph into a star tree. So that the distances remain the same between pages (yellow vertices).

What is the double-coverage algorithm for star? (paging)

It will be Flash-When-Full (FWF). Another proof that FWF has competitive ratio k. Note that FWF can be implemented in a lazy fashion!
When we have $k = 2$, we can use a version of double-coverage algorithm.

On a request to x, consider the shortest paths between the servers and x.

Move servers at the same ‘speed’ on the selected paths.

- In case server s_1 ‘blocks’ s_2, stop moving s_2.
Double Coverage Algorithm for \(k = 2 \)

- When we have \(k = 2 \), we can use a version of double-coverage algorithm.
- On a request to \(x \), consider the shortest paths between the servers and \(x \).
 - Select shortest paths with maximum shared edges!
 - When both servers move, they should get closer [for potential to work] (why)?
- Move servers at the same ‘speed’ on the selected paths
 - In case server \(s_1 \) ‘blocks’ \(s_2 \), stop moving \(s_2 \).
When we have $k = 2$, we can use a version of double-coverage algorithm.

On a request to x, consider the shortest paths between the servers and x.

Move servers at the same ‘speed’ on the selected paths.

- In case server s_1 ‘blocks’ s_2, stop moving s_2.
When we have $k = 2$, we can use a version of double-coverage algorithm.

On a request to x, consider the shortest paths between the servers and x.

Move servers at the same ‘speed’ on the selected paths.

In case server s_1 ‘blocks’ s_2, stop moving s_2.
When we have $k = 2$, we can use a version of double-coverage algorithm.

On a request to x, consider the shortest paths between the servers and x.

Move servers at the same ‘speed’ on the selected paths.

- In case server s_1 ‘blocks’ s_2, stop moving s_2.
Introduction

Double Coverage Algorithm for $k = 2$

- When we have $k = 2$, we can use a version of double-coverage algorithm.
- On a request to x, consider the shortest paths between the servers and x.
- Move servers at the same ‘speed’ on the selected paths.
 - In case server s_1 ‘blocks’ s_2, stop moving s_2.
When we have \(k = 2 \), we can use a version of double-coverage algorithm.

On a request to \(x \), consider the shortest paths between the servers and \(x \).

Move servers at the same ‘speed’ on the selected paths.

In case server \(s_1 \) ‘blocks’ \(s_2 \), stop moving \(s_2 \).
Introduction

Double Coverage Algorithm for \(k = 2 \)

- When we have \(k = 2 \), we can use a version of double-coverage algorithm.
- On a request to \(x \), consider the shortest paths between the servers and \(x \\)
 - Selects shortest paths with maximum shared edges!
- Move servers at the same ‘speed’ on the selected paths
 - In case server \(s_1 \) ‘blocks’ \(s_2 \), stop moving \(s_2 \).
Introduction

Double Coverage Algorithm for \(k = 2 \)

- When we have \(k = 2 \), we can use a version of double-coverage algorithm.
- On a request to \(x \), consider the shortest paths between the servers and \(x \)
 - Selects shortest paths with maximum shared edges!

- Move servers at the same ‘speed’ on the selected paths
 - In case server \(s_1 \) ‘blocks’ \(s_2 \), stop moving \(s_2 \).
Double Coverage Algorithm for $k = 2$

- When we have $k = 2$, we can use a version of double-coverage algorithm.

- On a request to x, consider the shortest paths between the servers and x
 - Selects shortest paths with maximum shared edges!

- Move servers at the same ‘speed’ on the selected paths
 - In case server s_1 ‘blocks’ s_2, stop moving s_2.
When we have $k = 2$, we can use a version of double-coverage algorithm.

On a request to x, consider the shortest paths between the servers and x

- Selects shortest paths with maximum shared edges!
- When both servers move, they should get closer [for potential to work] (why)?

Move servers at the same ‘speed’ on the selected paths

- In case server s_1 ‘blocks’ s_2, stop moving s_2.
Double Coverage Algorithm for $k = 2$

- When we have $k = 2$, we can use a version of double-coverage algorithm.

- On a request to x, consider the shortest paths between the servers and x
 - Selects shortest paths with maximum shared edges!
 - When both servers move, they should get closer [for potential to work] (why)?

- Move servers at the same ‘speed’ on the selected paths
 - In case server s_1 ‘blocks’ s_2, stop moving s_2.

Theorem

DCA has a competitive ratio of k when $k = 2$.
Double Coverage Algorithm for $k = 3$?

Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

For $\sigma = (B \ D \ E)^n$, we have $\text{cost}(DCA) > n$.

\[\sigma = (B \ D \ E)^n \]
Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

For $\sigma = \sigma = (B \ D \ E)^n$, we have $\text{cost}(DCA) > n$.

$\sigma = (B \ D \ E)^n$
Double Coverage Algorithm for $k = 3$?

Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

- For $\sigma = \sigma = (B \ D \ E)^n$, we have $\text{cost}(DCA) > n$.

$\sigma = (B \ D \ E)^n$
Double Coverage Algorithm for $k = 3$?

Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

For $\sigma = \sigma = (B\ D\ E)^n$, we have $\text{cost}(DCA) > n$.

\[
\sigma = (B\ D\ E)^n
\]
Introduction

Double Coverage Algorithm for $k = 3$?

Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

For $\sigma = (B \ D \ E)^n$, we have $\text{cost}(DCA) > n$.

\[\sigma = (B \ D \ E)^n \]
Double Coverage Algorithm for $k = 3$?

Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

For $\sigma = (B \ D \ E)^n$, we have $\text{cost}(DCA) > n$.

$\sigma = (B \ D \ E)^n$
Double Coverage Algorithm for $k = 3$?

Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

- For $\sigma = \sigma = (B\ D\ E)^n$, we have $\text{cost}(DCA) > n$.

\[
\sigma = (B\ D\ E)^n
\]
Double Coverage Algorithm for \(k = 3 \)?

Theorem

When \(k = 3 \), double coverage algorithm is not \(k \)-competitive even for cycles.

- For \(\sigma = \sigma = (B \ D \ E)^n \), we have \(\text{cost}(DCA) > n \).
- Cost of \(\text{OPT} \) for \(\sigma \) is 2.
 - \(\text{OPT} \) moves server 3 to B and makes no further move.

\[\sigma = (B \ D \ E)^n \]
Introduction

Double Coverage Algorithm for $k = 3$?

Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

- For $\sigma = \sigma = (B \ D \ E)^n$, we have $\text{cost}(DCA) > n$.
- Cost of OPT for σ is 2.
 - OPT moves server 3 to B and makes no further move.
- The competitive ratio of DCA when $k = 3$ is more than $\frac{n}{2}$ for a cycle graph.

$\sigma = (B \ D \ E)^n$
Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

- For $\sigma = \sigma = (B \ D \ E)^n$, we have $\text{cost}(DCA) > n$.
- Cost of OPT for σ is 2.
 - OPT moves server 3 to B and makes no further move.
- The competitive ratio of DCA when $k = 3$ is more than $\frac{n}{2}$ for a cycle graph.
 - This is much worse than k (why?)
Introduction

Double Coverage Algorithm (DCA) for $k = 2$ & $k = 3$

- Why DCA has a competitive ratio of k when $k = 2$ and unbounded competitive ratio for $k = 3$? (intuition)
Introduction

Double Coverage Algorithm (DCA) for

\[k = 2 \& k = 3 \]

- Why DCA has a competitive ratio of \(k \) when \(k = 2 \) and unbounded competitive ratio for \(k = 3 \)? (intuition)
- When \(k = 2 \), the triangle formed by the two servers & the requested node can be embedded into a tree.

[Diagram showing geometric relationships and triangle inequalities]

\[\frac{a+b-c}{2}, \frac{b+c-a}{2}, \frac{a+c-b}{2} \]
Double Coverage Algorithm (DCA) for $k = 2$ & $k = 3$

- Why DCA has a competitive ratio of k when $k = 2$ and unbounded competitive ratio for $k = 3$? (intuition)
- When $k = 2$, the triangle formed by the two servers & the requested node can be embedded into a tree.
- When $k = 3$, the graph formed by the three vertices & the requested node cannot be necessarily embedded into a tree.
 - E.g., a cycle cannot be embedded into a tree
DCA is k-competitive (optimal) for paths, trees, and any metric that can be embedded in trees (e.g., complete graph).
Double Coverage Algorithm (DCA)

Summary

- DCA is k-competitive (optimal) for paths, trees, and any metric that can be embedded in trees (e.g., complete graph).
- DCA is k-competitive (optimal) for $k = 2$.
- DCA is not useful for $k \geq 3$ even if the metric is a cycle.
Introducing Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers

- Is it a good algorithm?

For n requests, cost(Balance) = $n \cdot d$

\[
\text{cost(Opt)} = d + n
\]

The competitive ratio of the Balance algorithm is at least

\[
\frac{nd}{n + d} \approx d
\]

which is much more than the optimal ratio of $k = 2$.

Balance is k-competitive for metrics with $k + 1$ nodes.
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

\[\text{cost (Balance)} = n \cdot d \]

\[\text{cost (Opt)} = d + n (\text{why?}) \]

The competitive ratio of the Balance algorithm is at least

\[\frac{nd}{n+d} \approx d \],

which is much more than the optimal ratio of \(k = 2 \).

Balance is \(k \)-competitive for metrics with \(k+1 \) nodes.

\[\sigma = (D \ C \ B \ A)^n \]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

\[\sigma = (D \ C \ B \ A)^n \]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

For \(n \) requests,

\[
\text{cost}(\text{Balance}) = n \cdot d
\]

\[
\text{cost}(\text{Opt}) = d + n \quad (\text{why?})
\]

The competitive ratio of the Balance algorithm is at least

\[
\frac{n \cdot d}{d + n} \approx d,
\]

which is much more than the optimal ratio of \(k = 2 \).

Balance is \(k \)-competitive for metrics with \(k + 1 \) nodes.

\[
\sigma = (D \ C \ B \ A)^n
\]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

\[\sigma = (D \ C \ B \ A)^n \]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

\[\sigma = (D \ C \ B \ A)^n \]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

\[
\sigma = (D \ C \ B \ A)^n
\]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

\[\sigma = (D \ C \ B \ A)^n \]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

\[\sigma = (D \ C \ B \ A)^n \]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?

\[\sigma = (D \ C \ B \ A)^n \]
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers.
- Is it a good algorithm?
 - For n requests, $\text{cost}(\text{Balance}) = n \cdot d$

$$\sigma = (D \ C \ B \ A)^n$$
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers.
- Is it a good algorithm?
 - For n requests, $\text{cost(\text{Balance})} = n \cdot d$
 - $\text{cost(\text{OPT})} = d + n$ (why?)
 - The competitive ratio of the Balance algorithm is at least $\frac{nd}{n+d} \approx d$, which is much more than the optimal ratio of $k = 2$.

\[
\sigma = (D \ C \ B \ A)^n
\]
Introduction

Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers
- Is it a good algorithm?
 - For n requests, $\text{cost}(\text{Balance}) = n \cdot d$
 - $\text{cost}(\text{OPT}) = d + n$ (why?)
 - The competitive ratio of the Balance algorithm is at least $\frac{nd}{n+d} \approx d$, which is much more than the optimal ratio of $k = 2$.

- **Balance is k-competitive for metrics with $k + 1$ nodes**

$$\sigma = (D \ C \ B \ A)^n$$
Randomized algorithms

- Compare against *oblivious adversary*
 - For any metric space, no algorithm can be better than $\log k$ competitive
Randomized algorithms

- Compare against *oblivious adversary*
 - For any metric space, no algorithm can be better than $\log k$ competitive
- Randomized k-server conjecture
 - For any metric space there is a randomized $\log k$-competitive algorithm
Randomized algorithms

- Compare against *oblivious adversary*
 - For any metric space, no algorithm can be better than log \(k \) competitive
- Randomized \(k \)-server conjecture
 - For any metric space there is a randomized log \(k \)-competitive algorithm
- Verified for hierarchical binary trees
Introduction

Randomized algorithms

- Compare against *oblivious adversary*
 - For any metric space, no algorithm can be better than $\log k$ competitive
- Randomized k-server conjecture
 - For any metric space there is a randomized $\log k$-competitive algorithm
- Verified for hierarchical binary trees
- For general graphs, there is a $O(\log^3 m \log^2 k)$-competitive graph
 - Better than $2k - 1$ when m is sub-exponential of k
If your mark is under or close to 75%, you should reconsider your approach to this course.