Review & Plan

Review & Plan
Today’s objectives

- k-server problem
 - Offline algorithms
 - Work-function algorithm
- Techniques for advice lower bounds
k-Server Problem
Introduction

\textit{k}-sever problem

We have a metric space of size \(m \) with \(k \)-servers in the graph. A sequence of \(n \) requests to the vertices of the graph is to be served by a server. Minimize the total distance moved by the servers.

\[\sigma = < S, M, K, A, D, B, D, B, D > \]

\[\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1 \]
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph

Diagram:

```
σ = < S M K A D B D B D >
costs = 2 0 2 1 1 1 1 1 1
```
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server

$\sigma = <S, M, K, A, D, B, D, B, D>$

Costs: $2, 0, 2, 1, 1, 1, 1, 1, 1, 1$
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

\[\sigma = < S, M, K, A, D, B, D, B, D > \]
\[\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \]
We have a metric space of size m,
- $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers
We have a metric space of size m

- $k < m$ servers in the graph

A sequence of n requests to the vertices of the graph

- Each request should be served by a server

Minimize the total distance moved by servers

\[
\sigma = < S \ M \ K \ A \ D \ B \ D \ B \ D > \\
\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
\]
We have a metric space of size m
- $k < m$ servers in the graph

A sequence of n requests to the vertices of the graph
- Each request should be served by a server

Minimize the total distance moved by servers
Introduction

k-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of n requests to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

\[\sigma = < S \ M \ K \ A \ D \ B \ D \ B \ D > \]
\[\text{costs} = 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \]
We have a metric space of size \(m \)
- \(k < m \) servers in the graph

A sequence of \(n \) requests to the vertices of the graph
- Each request should be served by a server

Minimize the total distance moved by servers

\[
\sigma = < S, M, K, A, D, B, D, B, D >
\]
\[
\text{costs} = 2, 0, 2, 1, 1, 1, 1, 1, 1
\]
For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

k-server conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

Major Results

- For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

- k-server conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

- Double coverage algorithm (DCA)
 - proves k-server conjecture holds for paths, trees, and cases with $k = 2$
 - It is not useful for any other metric (i.e., metrics with a cycle and $k \geq 3$)
Introduction

Major Results

- For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

- k-server conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

- Double coverage algorithm (DCA)
 - proves k-server conjecture holds for paths, trees, and cases with $k = 2$
 - It is not useful for any other metric (i.e., metrics with a cycle and $k \geq 3$)

- The balancing algorithm (Balance)
 - proves k-server conjecture for cases with $m = k + 1$ (m is the size of the metric).
 - is not competitive for general metrics (even wen $k = 2$).
Sometimes an offline algorithm can used as a reference for taking online algorithms

- Look how the optimal offline algorithm would have served the sequence (if it ended right now)
A configuration indicates the placement of k servers.
A configuration indicates the placement of k servers.

Consider an initial configuration C_0 and a sequence

$$\sigma = \langle x_1, x_2, \ldots, x_t, \ldots, x_n \rangle.$$

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Define the distance d between two configurations as the total distance required for servers to move in order to covert one configuration to another.
Given a configuration X, the **work function** $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

$C_0 = (A, D), X = (A, B), d(C_0, X) = 2$
Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle B, A, B, A, C, D \rangle$
What is $w_0((B, D))$?

$C_0 = (B, D), Y = (A, C), d(C_0, Y) = 1$
Introduction

Work Function Examples

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle BABA\text{CD} \rangle$
What is $w_0((B, D))$? It is 1!

$C_0 = (B, D), \ Y = (A, C), \ d(C_0, Y) = 1$
Introduction

Work Function Examples

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle BABACD \rangle$
What is $w_0((B, D))$? It is 1!

What is $w_1(B, D)$?
- Serve the request to B and be at conf. (B, D)?
Given a configuration \(X \), the work function \(w_t(X) \) is the cost of optimal solution for serving \(x_1, \ldots, x_t \) and ending up at configuration \(X \).

Assume \(\sigma = \langle BABACD \rangle \)
What is \(w_0((B, D)) \)? it is 1!

What is \(w_1(B, D) \)?
- Serve the request to \(B \) and be at conf. \((B, D) \)?
- \(w_1(B, D) = 1 \).
Introduction

Work Function Examples

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle B, A, B, A, C, D \rangle$

What is $w_0((B, D))$? It is 1!

What is $w_1(B, D)$?
- Serve the request to B and be at conf. (B, D)?
- $w_1(B, D) = 1.$

What is $w_1(A, D)$?
Given a configuration X, the **work function** $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle BABACD \rangle$

What is $w_0((B,D))$? It is 1!

What is $w_1(B,D)$?

- Serve the request to B and be at conf. (B,D)?
- $w_1(B,D) = 1$.

What is $w_1(A,D)$?

- Serve the request to B and be at conf. (A,D)
- move A to B and take it back $\rightarrow w_1(A,D) = 2$
Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle BABA CD \rangle$
What is $w_0((B, D))$? It is 1!

What is $w_1(B, D)$?
- Serve the request to B and be at conf. (B, D)
- $w_1(B, D) = 1$.

What is $w_1(A, D)$?
- serve the request to B and be at conf. (A, D)
- move A to B and take it back $\rightarrow w_1(A, D) = 2$

What is $w_2(A, D)$? \rightarrow serve the requests to BA and be at conf. (A, D)
Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle BABA CD \rangle$
 - What is $w_0((B, D))$? It is 1!

- What is $w_1(B, D)$?
 - Serve the request to B and be at conf. (B, D)?
 - $w_1(B, D) = 1$.

- What is $w_1(A, D)$?
 - Serve the request to B and be at conf. (A, D)
 - move A to B and take it back $\rightarrow w_1(A, D) = 2$

- What is $w_2(A, D)$? \rightarrow serve the requests to BA and be at conf. (A, D)
 - move A to B and take it back $\rightarrow w_2(A, D) = 2$
Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle BABACD \rangle$

What is $w_3(A, D)$?
Work Function Examples

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle BABACD \rangle$

- What is $w_3(A, D)$?
 - Serve the requests to BAB and be at conf. (B, D)?
 - $w_3(A, D) = 4$.
Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

Assume $\sigma = \langle BABACD \rangle$

What is $w_3(A, D)$?

- Serve the requests to BAB and be at conf. (B, D)?
- $w_3(A, D) = 4$.

What is $w_3(A, B)$?
Work Function Examples

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle BABA, CD \rangle$

- What is $w_3(A, D)$?
 - Serve the requests to BAB and be at conf. (B, D)?
 - $w_3(A, D) = 4$.

- What is $w_3(A, B)$?
 - Serve the requests to BAB and be at conf. $(A, B) \rightarrow w_3(A, B) = 2$.

Greedy is not optimal!
Introduction

Work Function Examples

- Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving x_1, \ldots, x_t and ending up at configuration X.

- Assume $\sigma = \langle B A B A C D \rangle$

- What is $w_3(A, D)$?
 - Serve the requests to $B A B$ and be at conf. (B, D)?
 - $w_3(A, D) = 4$.

- What is $w_3(A, B)$?
 - Serve the requests to $B A B$ and be at conf. $(A, B) \rightarrow w_3(A, B) = 2$.

 - $w_3(A, B) < w_3(A, D) \rightarrow$ optimal algorithm prefers to have its servers on A and B rather than A and D after serving $t = 3$ requests
 - Greedy is not optimal!
Computing Work Function

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving $x_1, \ldots, x_{t-1}, x_t$ and ending up at configuration X.

How to compute work function $w_t(X)$?

Let Y_1 be the config. of OPT after serving x_{t-1}, Y_2 is the config. after serving x_t (so $x_t \in Y_2$, i.e., Y has a server at x_t).

- OPT's configuration changes from Y_1 to Y_2 and then to X
- For fixed Y_1, Y_2 we have

$$w_t(X) = w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X); x_t \in Y_2$$
Computing Work Function

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving $x_1, \ldots, x_{t-1}, x_t$ and ending up at configuration X.

How to compute work function $w_t(X)$?

Let Y_1 be the config. of OPT after serving x_{t-1}, Y_2 is the config. after serving x_t (so $x_t \in Y_2$, i.e., Y has a server at x_t).

- OPT's configuration changes from Y_1 to Y_2 and then to X
- For fixed Y_1, Y_2 we have
 \[w_t(X) = w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X); \ x_t \in Y_2 \]

OPT chose the previous configurations so that work function (its cost) is minimized

- $w_t(X) = \min_{Y_1, Y_2} \{w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X)\}$ so that $x_t \in Y_2$

\[\frac{Z=Y_1=Y_2}{w_t(X) = \min_{Z} \{w_{t-1}(Z) + d(X, Z)\}} \] so that $x_t \in Z$
Computing Work Function

Given a configuration X, the work function $w_t(X)$ is the cost of optimal solution for serving $x_1, \ldots, x_{t-1}, x_t$ and ending up at configuration X.

How to compute work function $w_t(X)$?

Let Y_1 be the config. of OPT after serving x_{t-1}, Y_2 is the config. after serving x_t (so $x_t \in Y_2$, i.e., Y has a server at x_t).

- OPT's configuration changes from Y_1 to Y_2 and then to X.
- For fixed Y_1, Y_2 we have
 \[w_t(X) = w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X); x_t \in Y_2 \]

OPT chose the previous configurations so that work function (its cost) is minimized

\[w_t(X) = \min_{Y_1, Y_2} \{w_{t-1}(Y_1) + d(Y_1, Y_2) + d(Y_2, X)\} \text{ so that } x_t \in Y_2 \]

\[Z = Y_1 = Y_2 \]

\[w_t(X) = \min_Z \{w_{t-1}(Z) + d(X, Z)\} \text{ so that } x_t \in Z \]

\[w_0(X) = d(X, C_0) \]
Computing Work Function

\(w_t(X) = \min_{Z} \{ w_{t-1}(Z) + d(X, Z) \} \) \(x_t \in Z; \quad w_0(X) = d(X, C_0) \)

Find all values of work function values using dynamic programming!
Introduction

Computing Work Function

\[w_t(X) = \min_{Z} \{ w_{t-1}(Z) + d(X, Z) \} \quad x_t \in Z; \quad w_0(X) = d(X, C_0) \]

- Find all values of work function values using dynamic programming!

E.g.,

\[w_{t-1}(C_1) = 21, w_{t-1}(C_2) = 15, w_{t-1}(C_3) = 10, w_{t-1}(C_4) = 11 \]

\[d(C_1, C_2) = 3, d(C_1, C_3) = 5, d(C_1, C_4) = 1. \]

\[d(C_2, C_3) = 4, d(C_2, C_4) = 2, d(C_3, C_4) = 2. \]

Assume \(x_t \) is present in all \(C_1, C_2, C_3 \) but not in \(C_4 \).

\[w_t(C_1) = \min \{(21 + 0, 15 + 3, 10 + 5) = 15\} \]

If \(\text{OPT} \) wants to get to configuration \(X \), it moves from \(C_3 \) to \(C_1 \)!
Introduction

Computing Work Function

\[w_t(X) = \min_{Z} \{ w_{t-1}(Z) + d(X, Z) \} \text{ for } x_t \in Z; \quad w_0(X) = d(X, C_0) \]

Find all values of work function values using dynamic programming!

E.g.,
\[w_{t-1}(C_1) = 21, \ w_{t-1}(C_2) = 15, \ w_{t-1}(C_3) = 10, \ w_{t-1}(C_4) = 11 \]
\[d(C_1, C_2) = 3, \ d(C_1, C_3) = 5, \ d(C_1, C_4) = 1. \]
\[d(C_2, C_3) = 4, \ d(C_2, C_4) = 2, \ d(C_3, C_4) = 2. \]

Assume \(x_t \) is present in all \(C_1, C_2, C_3 \) but not in \(C_4 \).

\[w_t(C_1) = \min \{(21 + 0, 15 + 3, 10 + 5) = 15 \} \]

If \(\text{OPT} \) wants to get to configuration \(X \), it moves from \(C_3 \) to \(C_1 \)!

\[w_t(C_2) = \min \{(21 + 3, 15 + 0, 10 + 4) = 14 \} \]
Introduction

Computing Work Function

- \(w_t(X) = \min_{Z} \{ w_{t-1}(Z) + d(X, Z) \} \quad x_t \in Z; \quad w_0(X) = d(X, C_0) \)
- Find all values of work function values using dynamic programming!

E.g.,
\(w_{t-1}(C_1) = 21, w_{t-1}(C_2) = 15, w_{t-1}(C_3) = 10, w_{t-1}(C_4) = 11 \)
\(d(C_1, C_2) = 3, d(C_1, C_3) = 5, d(C_1, C_4) = 1. \)
\(d(C_2, C_3) = 4, d(C_2, C_4) = 2, d(C_3, C_4) = 2. \)

Assume \(x_t \) is present in all \(C_1, C_2, C_3 \) but not in \(C_4 \).
\(w_t(C_1) = \min\{(21 + 0, 15 + 3, 10 + 5) = 15\} \)

If \(\text{OPT} \) wants to get to configuration \(X \), it moves from \(C_3 \) to \(C_1 \)!

\(w_t(C_2) = \min\{(21 + 3, 15 + 0, 10 + 4) = 14\} \)
\(w_t(C_3) = \min\{(21 + 5, 15 + 4, 10 + 0) = 10\} \)
Computing Work Function

\[w_t(X) = \min \{ w_{t-1}(Z) + d(X, Z) \} \quad x_t \in Z; \quad w_0(X) = d(X, C_0) \]

Find all values of work function values using dynamic programming!

E.g.,
\[w_{t-1}(C_1) = 21, w_{t-1}(C_2) = 15, w_{t-1}(C_3) = 10, w_{t-1}(C_4) = 11 \]
\[d(C_1, C_2) = 3, d(C_1, C_3) = 5, d(C_1, C_4) = 1. \]
\[d(C_2, C_3) = 4, d(C_2, C_4) = 2, d(C_3, C_4) = 2. \]

Assume \(x_t \) is present in all \(C_1, C_2, C_3 \) but not in \(C_4 \).

\[w_t(C_1) = \min \{ (21 + 0, 15 + 3, 10 + 5) = 15 \} \]

If \(\text{OPT} \) wants to get to configuration \(X \), it moves from \(C_3 \) to \(C_1 \)!

\[w_t(C_2) = \min \{ (21 + 3, 15 + 0, 10 + 4) = 14 \} \]
\[w_t(C_3) = \min \{ (21 + 5, 15 + 4, 10 + 0) = 10 \} \]
\[w_t(C_4) = \min \{ (21 + 1, 15 + 2, 10 + 2) = 12 \} \]
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming

```
conf\input

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_Z w_n(Z) \)

```
confs\input

\begin{array}{cccccccc}
& 0 & 1 & 2 & \ldots & n-1 & n \\
C1 & \ast & \ast & & & & \\
C2 & \ast & \ast & & & & \\
C3 & \ast & \ast & & & & \\
C4 & \ast & \ast & & & & \\
\end{array}
```
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_Z w_n(Z) \)

\[\text{confs\ input} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_Z w_n(Z) \)

<table>
<thead>
<tr>
<th>cons</th>
<th>input</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>* * * * * * * * * * * * * *</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>* * * * * * * * * * * * * *</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>* * * * * * * * * * * * * *</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>* * * * * * * * * * * * * *</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_Z w_n(Z) \)

```
conf\textbf{s/input}

\begin{array}{cccccc}
 & 0 & 1 & 2 & \ldots & n-1 & n \\
C1 & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & 21 & 15 \\
C2 & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & 15 & 14 \\
C3 & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & 10 & 14 \\
C4 & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * & 11 & 16 \\
\end{array}
```
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_{Z} w_n(Z) \)

```
confs\input

\begin{tabular}{c|cccccc}
\hline
& 0 & 1 & 2 & \cdots & n-1 & n \\
\hline
C1 & * & * & * & * & * & * & * & * & * & * & * & * & * & * & 21 & 15 \\
C2 & * & * & * & * & * & * & * & * & * & * & * & * & * & * & 15 & 14 \\
C3 & * & * & * & * & * & * & * & * & * & * & * & * & * & * & 10 & 14 \\
C4 & * & * & * & * & * & * & * & * & * & * & * & * & * & * & 11 & 16 \\
\hline
\end{tabular}
```
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_{Z} w_n(Z) \)
- Move backward to find the right moves!

confs\input

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>(n-1)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C1)</td>
<td>* * * * * * * * * * * * * * * * * *</td>
<td>21</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C2)</td>
<td>* * * * * * * * * * * * * * * * * *</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C3)</td>
<td>* * * * * * * * * * * * * * * * * *</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C4)</td>
<td>* * * * * * * * * * * * * * * * * *</td>
<td>11</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_w w_n(Z) \)
- Move backward to find the right moves!
- Can I do this in online manner?

```markdown
<table>
<thead>
<tr>
<th>confs\input</th>
<th>1</th>
<th>2</th>
<th>....</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
</tbody>
</table>
```

COMP 7720 - Online Algorithms Paging and k-Server Problem
Introduction

Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., $\min_Z w_n(Z)$
- Move backward to find the right moves!
- Can I do this in online manner?
 - We can set work function values online!

```
conf\input
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>....</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Optimal Offline Algorithm

- Find all values of work-function using dynamic programming
- Find the configuration with minimum work function after serving all sequence, i.e., \(\min_{Z} w_n(Z) \)
- Move backward to find the right moves!
- Can I do this in online manner?
 - We can set work function values online!
 - We cannot do the backward move

confs\input

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>....</th>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*...</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*...</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*...</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*...</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

> 21 15
> 15 14
> 10 14
> 11 16
Introduction

Work-function algorithm

- Maintain work-function values in an online manner
- Assume we are at configuration X before serving the t’th request to x
Introduction

Work-function algorithm

- Maintain work-function values in an online manner
- Assume we are at configuration X before serving the t'th request to x
- There are k options for a lazy algorithm to serve the tth request
 - Each associated with a configuration Y (so that $x \in Y$)
Work-function algorithm

- Maintain work-function values in an online manner
- Assume we are at configuration X before serving the t'th request to x
- There are k options for a lazy algorithm to serve the tth request
 - Each associated with a configuration Y (so that $x \in Y$)
- work-function algorithm selects the configuration Y so that minimizes $w_t(Y) + d(X, Y)$
Work-function algorithm

- Maintain work-function values in an online manner
- Assume we are at configuration X before serving the t'th request to x
- There are k options for a lazy algorithm to serve the tth request
 - Each associated with a configuration Y (so that $x \in Y$)
- Work-function algorithm selects the configuration Y so that minimizes $w_t(Y) + d(X, Y)$
Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

Current configuration: (A, D)
Work Function Algorithm Examples

- Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$
- Current configuration: (A, D)

<table>
<thead>
<tr>
<th>configs\input</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,B)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(A,D)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

COMP 7720 - Online Algorithms Paging and k-Server Problem
Introduction

Work Function Algorithm Examples

- Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

- Current configuration: (A, D)

- Current request: B

 config. (A, B):
 \[w_1(A, B) + d((A, B), (A, D)) = 2 + 2 = 4 \]

 config (A, D):
 \[w_1(A, D) + d((A, D), (A, D)) = 2 + 0 = 2 \]

 \rightarrow config. (A, D) is preferred!

\begin{tabular}{c|c|c}
 & 0 & 1 & 2 \\
\hline
(A,B) & 2 & 2 & \\
(A,D) & 0 & 2 & \\
\end{tabular}
Assume $\sigma = \langle B\ A\ B\ A\ B\ A\ \ldots \rangle$

Current configuration: (A, D)

Current request: A

config. (A, B):

$w_2(A, B) + d((A, B), (A, D)) = 2 + 2 = 4$

config (A, D):

$w_2(A, D) + d((A, D), (A, D)) = 2 + 0 = 2$

\rightarrow config. (A, D) is preferred!

\begin{tabular}{c|ccc}
 & 0 & 1 & 2 \\
\hline
(A, B) & 2 & 2 & 2 \\
(A, D) & 0 & 2 & 2 \\
\hline
\end{tabular}
Assume $\sigma = \langle B\ A\ B\ A\ B\ A\ \ldots \rangle$

Current configuration: (A, D)

- Current request: B
 - config. (A, B): $w_3(A, B) + d((A, B), (A, D)) = 2 + 2 = 4$
 - config (A, D): $w_3(A, D) + d((A, D), (A, D)) = 4 + 0 = 4$
- Both configurations are the same (assume algorithm chooses (A, D))

<table>
<thead>
<tr>
<th>confs\input</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,B)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(A,D)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Work Function Algorithm Examples

- Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ \ldots \rangle$
- Current configuration: (A, D)
 - Current request: A
 - config. (A, B):
 $w_4(A, B) + d((A, B), (A, D)) = 2 + 2 = 4$
 - config (A, D):
 $w_4(A, D) + d((A, D), (A, D)) = 4 + 0 = 4$
 - Both configurations are the same (assume algorithm chooses (A, D))

```
conf\input

\begin{array}{c|c|c|c|c}
0 & 1 & 2 & 3 & 4 \\
\hline
(A, B) & 2 & 2 & 2 & 2 \\
(A, D) & 0 & 2 & 2 & 4 & 4 \\
\end{array}
```
Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

Current configuration: (A, D)

Current request: A
config. (A, B):
$w_5(A, B) + d((A, B), (A, D)) = 2 + 2 = 4$
config (A, D):
$w_5(A, D) + d((A, D), (A, D)) = 6 + 0 = 6$
Now (A, B) is preferred $\rightarrow \text{move server 2 instead of 1!}$
Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$

Current configuration: (A, D)

The worse-case sequences for greedy do not cause problem for work function algorithm!

<table>
<thead>
<tr>
<th>confs\input</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,B)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(A,D)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

General graphs

- Work-function algorithm:
General graphs

- Work-function algorithm:
 - has a competitive ratio of $2k - 1$ competitive for general metrics.
Introduction

General graphs

- Work-function algorithm:
 - has a competitive ratio of $2k - 1$ competitive for general metrics.
 - k-competitive for line, star, and graphs with $m \leq k + 2$.
 - Trees and general graphs?
Introduction

General graphs

• Work-function algorithm:
 • has a competitive ratio of $2k - 1$ competitive for general metrics.
 • k-competitive for line, star, and graphs with $m \leq k + 2$.
 • Trees and general graphs?

• Work-function algorithm is conjectured to be k-competitive for any metric
Introduction

General graphs

Work-function algorithm:
- has a competitive ratio of $2k - 1$ competitive for general metrics.
- k-competitive for line, star, and graphs with $m \leq k + 2$.
- Trees and general graphs?

Work-function algorithm is conjectured to be k-competitive for any metric
- It might answer the k-server conjecture in affirmative (but we are not sure)
Work-function Framework

- Define a ‘configuration’ as the state of an algorithm
 - locations of servers or state of the linked-list (list update), etc.

Define the ‘distance’ between two configurations based on the cost model: distance moved by servers or number of paid exchanges to change the state of the list from one configuration to another.
Define a ‘configuration’ as the state of an algorithm
- locations of servers or state of the linked-list (list update), etc.

Define the ‘distance’ between two configurations based on the cost model
- distance moved by servers or number of paid exchanges to change the state of the list from one config. to another
Work-function Framework

- Define a ‘configuration’ as the state of an algorithm
 - locations of servers or state of the linked-list (list update), etc.
- Define the ‘distance’ between two configurations based on the cost model
 - distance moved by servers or number of paid exchanges to change the state of the list from one config. to another
- Define the work function $w_t(X)$ as the cost of OPT for serving t requests and ending up at config. X
 - Maintain the work-function in an online manner.
Define a ‘configuration’ as the state of an algorithm
- locations of servers or state of the linked-list (list update), etc.

Define the ‘distance’ between two configurations based on the cost model
- distance moved by servers or number of paid exchanges to change the state of the list from one config. to another

Define the work function $w_t(X)$ as the cost of OPT for serving t requests and ending up at config. X
- Maintain the work-function in an online manner.

Work-function algorithm: assume we are at configuration C; switch to a configuration Y that minimizes $w_t(Y) + d(C, Y)$