COMP 7720 - Online Algorithms

Self-Adjusting Trees & Paging

Shahin Kamali

Lecture 7 - Sep. 28, 2017

University of Manitoba
Review & Plan
Today’s objectives

- Self-Adjusting Trees
 - Splay trees
- Paging Problem
Self-Adjusting Trees
The input is a set of requests to items in a list of length L
- The goal is to update the list to adjust it into patterns in the input.
- There is a lot of locality in the input sequence: ⟨2 2 2 2 2 1 1 3 3 3 3 3 3 1 1 2 2 2⟩
- Move-To-Front is the best deterministic list-update algorithm
The input is a set of \textit{requests} to items in a BST of size N.

- The goal is to update the tree to adjust it into patterns in the input.

- There is a lot of \textit{locality} in the input sequence.

- Can we apply Move-To-Front for trees?
Splay Trees Idea

- When there is a request to item a, adjust the tree so that a becomes root in the new tree!
- Use tree rotations to ‘bubble up’ the accessed item.
- We say that we splay a to become root in the adjusted tree
 - It is a natural extension of Move-To-Front to the lists.
Splay Trees Idea

- When there is a request to item a, adjust the tree so that a becomes root in the new tree!

- Use tree rotations to ‘bubble up’ the accessed item.

- We say that we splay a to become root in the adjusted tree
 - It is a natural extension of Move-To-Front to the lists.
Splaying Rotations General Idea

Consider accessed item a, its parent p and grand-parent g (if they exist).

Reorder a, p, and g so that a appears ‘above’ the other two

- If a is smallest/largest, p and g will be in one side of a.
- If a is in between, p and g will be on its left and right.
Self-Adjusting Trees

Splaying Rotations General Idea

- Consider accessed item a, its parent p and grand-parent g (if they exist).
- Reorder a, p, and g so that a appears ‘above’ the other two
 - If a is smallest/largest, p and g will be in one side of a.
 - If a is in between, p and g will be on its left and right.
- After re-ordering a, p, and g, ‘place’ the following four subtrees in their appropriate position to save BST property:
 - the two subtrees of a
 - the sibling subtree of p
 - the sibling subtree of g
Self-Adjusting Trees

Splay Example

- E.g., Access $a = 12$
Self-Adjusting Trees

Splay Example

E.g., Access $a = 12$
Splay Example

- E.g., Access $a = 12$
Splay Example

E.g., Access $a = 12$
E.g., Access \(a = 12 \)
Splay Example

- E.g., Access \(a = 12 \)
Splay Example

- E.g., Access $a = 12$
Splay Example

- E.g., Access $a = 12$
Self-Adjusting Trees

Splay Example

E.g., Access $a = 12$
Splay Example

E.g., Access $a = 12$
Self-Adjusting Trees

Splay Example

E.g., Access $a = 12$
Splaying Cases (a bit more formal)

- The accessed node \(a \) is either
 - Root
 - Child of the root
 - Has both parent \((p)\) and grandparent \((g)\):
 - Zig-zig pattern: \(g \rightarrow p \rightarrow a \) is left-left or right-right
 - Zig-zag pattern: \(g \rightarrow p \rightarrow a \) is left-right or right-left
if x is root, do nothing!
When x is child of the root, do a single AVL rotation to move it above its parent.

- It is called a zig operation.
When x is left-child (resp. right-child) of P and p is right-child (resp. left-child) of g, do an AVL double rotation.

- It is called a zig-zag operation.
Reverse the order of a, p, and g.

It is called a **zig-zig** operation.
Self-Adjusting Trees

Splay Example

E.g., Access $a = 6$
E.g., Access $a = 4$
E.g., Access $a = 4$
E.g., Access $a = 4$
The accessed node is moved to ‘front’ (i.e., is now root)

Let \(b \) be a node on the access path from root to the accessed node \(a \). If \(b \) is at depth \(d \) before the splay, its at about depth \(d/2 \) after the splay.

Overall, nodes which are ‘deep’ on the access path tend to move closer to the root.
The accessed node is moved to ‘front’ (i.e., is now root)

Let b be a node on the access path from root to the accessed node a. If b is at depth d before the splay, its at about depth $d/2$ after the splay.

- Overall, nodes which are ‘deep’ on the access path tend to move closer to the root

Splaying gets amortized $O(\log N)$ amortized access time.
BST-Update problem:

- The input is an online sequence of requests to items in a BST.
- Each probe for finding an item x has cost 1.
- On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.
BST-Update problem:

- The input is an online sequence of requests to items in a BST.
- Each probe for finding an item x has cost 1.
- On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.

Dynamic Optimality Conjecture: Splay tree is a competitive solution, i.e., it has a competitive ratio independent of the size N of tree and length n of sequence.

- We know the competitive ratio of splay trees is $O(\log N)$
BST-Update problem:

- The input is an online sequence of requests to items in a BST.
- Each probe for finding an item x has cost 1.
- On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.

Dynamic Optimality Conjecture: Splay tree is a competitive solution, i.e., it has a competitive ratio independent of the size N of tree and length n of sequence.

- We know the competitive ratio of splay trees is $O(\log N)$

The best existing algorithm is provided by self-adjusting Tango Trees, and has a competitive ratio of $O(\log \log N)$
Write a survey of the self-adjusting data structures (other than linked lists).

- In particular, think of BSTs and other structures.
- For example, is there any self-adjusting hash table? what about self-adjusting skip lists?

Think about advice BST-Update algorithms with advice?

- How many bits are sufficient to achieve an optimal algorithm?
Paging Problem
There are two types of memory: a fast ‘cache’ of size \(k \), and a slow memory of unbounded size.

The input is an online sequence of requests to pages of size 1.

- To serve a request to page \(x \), it should be in the cache.
- In case \(x \) is not in the cache, a fault of cost 1 has happened.
- The goal is to minimize the total number of faults.
- To bring \(x \) to the cache, we might need to evict a page.
- A paging algorithm is defined through its eviction policy.
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 0

$$\sigma = \boxed{}$$
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
- A paging algorithm is defined through its eviction policy.

Cost (number of faults): 1

$$\sigma = a$$
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a **fault** of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to **evict** a page.
 - A paging algorithm is defined through its **eviction policy**.

Cost (number of faults): 2

$$\sigma = a \ b$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th></th>
</tr>
</thead>
</table>
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 3

$$\sigma = a \ b \ c$$

| a | b | c |
There are two types of memory: a fast ‘cache’ of size \(k \), and a slow memory of unbounded size.

The input is an online sequence of requests to pages of size 1.

- To serve a request to page \(x \), it should be in the cache.
- In case \(x \) is not in the cache, a fault of cost 1 has happened.

The goal is to minimize the total number of faults.

To bring \(x \) to the cache, we might need to evict a page.

A paging algorithm is defined through its eviction policy.

Cost (number of faults): 3

\[\sigma = a \ b \ c \ b \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to **evict** a page.
 - A paging algorithm is defined through its eviction policy.

Cost (number of faults): 3

\[
\sigma = a \ b \ c \ b \ a
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paging Problem

Problem Definition

There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.

The input is an online sequence of requests to pages of size 1.

- To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
- The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.

A paging algorithm is defined through its eviction policy.

Cost (number of faults): 4

$\sigma = abcba$
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size \(k \), and a slow memory of unbounded size
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page \(x \), it should be in the cache
- In case \(x \) is not in the cache, a fault of cost 1 has happened
 - The goal is to minimize the total number of faults
- To bring \(x \) to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy

Cost (number of faults): \(4 \)

\[
\sigma = a \ b \ c \ b \ a \ d \ c
\]

\[
\begin{array}{cccc}
a & b & c & d \\
\end{array}
\]
Paging Problem

Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
- The input is an online sequence of requests to pages of size 1.
 - To serve a request to page x, it should be in the cache.
- In case x is not in the cache, a fault of cost 1 has happened.
 - The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A paging algorithm is defined through its eviction policy.

<table>
<thead>
<tr>
<th>Cost (number of faults):</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma = a b c b a d c e$</td>
<td></td>
</tr>
</tbody>
</table>

A paging algorithm is defined through its eviction policy.
Paging Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

\[
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} & \text{d}
\end{array}
\]
Paging Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 5

σ = a b c b a d c e

| a | e | c | d |
Least-Recently-Used (LRU)

- **LRU algorithm**: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>e</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

\[
\begin{array}{cccc}
 f & e & c & d \\
\end{array}
\]
Paging Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[
\begin{array}{cccc}
 & f & e & c & d \\
\end{array}
\]
Paging Problem

Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>e</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>
Paging Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

\[
\begin{array}{cccc}
 \text{a} & \text{b} & \text{c} & \text{d} \\
\end{array}
\]
Paging Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 5

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \]

\[
\begin{array}{cccc}
e & b & c & d \\
\end{array}
\]
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \]

| e | b | c | d |
Paging Problem

First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 6

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f$$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>f</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[
\begin{array}{cccc}
 e & f & c & d \\
\end{array}
\]
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[
\begin{array}{|c|c|c|}
\hline
e & f & a \\
\hline
\end{array}
\]
Paging Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 5

$$\sigma = a \ b \ c\ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e$$

```
  a   b   c   d
```
Paging Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 5

\[\sigma = a\ b\ c\ b\ a\ d\ c\ e\ f\ a\ c\ d\ c\ f\ a\ b\ a\ e\]

\[
\begin{array}{cccc}
 a & e & c & d \\
\end{array}
\]
Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]
An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

```
  a  f  c  d
```
Paging Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>f</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
An Offline Algorithm

Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a\ b\ c\ b\ a\ d\ c\ e\ f\ a\ c\ d\ c\ f\ a\ b\ a\ e \]

\[
\begin{array}{|c|c|c|c|}
 \hline
 a & f & c & d \\
 \hline
\end{array}
\]
Paging Problem

An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a\ b\ c\ b\ a\ d\ c\ e\ f\ a\ c\ d\ c\ f\ a\ b\ a\ e \]

\[
\begin{array}{|c|c|c|c|}
\hline
a & f & c & d \\
\hline
\end{array}
\]
Theorem

Furthest-In-Future (FIF) is the optimal offline algorithm for paging.

- We will see the proof in the next class!