COMP 2140 - Data Structures

Shahin Kamali

Topic 3 - Algorithm Analysis

University of Manitoba

Based on notes by S. Durocher.
Overview

- time complexity
- measuring the time complexity of an algorithm
- Why Big-Oh?
- intuitively understanding Big-Oh
- formally defining Big-Oh
Sequential Search

We will analyze the running time of the following Java implementation of a sequential search algorithm.

```java
// precondition: array A and key are initialized
// postcondition: return i such that A[i] == key
// or i = length of A if for all i, A[i] != key

public int search(int[] A, int key) {
    int n = A.length;
    int i = 0;
    while (i < n) {
        if (A[i] == key) {
            break;
        }
        i++;
    }
    return i;
}
```
Algorithm Analysis

Definition

Algorithm analysis refers to the process of deriving estimates of the resource requirements or efficiency of an algorithm.

possible measures of efficiency:

- time taken
- amount of storage required
- number of data movements
- amount of network traffic generated
Algorithm Analysis

- We want to express these measurements as a function of input data size.

- For example, sorting an array of size 10, 10,000, or 10,000,000 will require different amounts of time. We describe the efficiency of a specific sorting algorithm in terms of the size of the input, the length of the array in this case, which we represent by n.

- The “time complexity” of an algorithm is expressed as a function of n, where n is the size of the input.

examples: $f(n) = n$
$g(n) = \log n$ (in this course, all log are based 2.)
$h(n) = 8n^3 + n \log n$

here $h(n) = 8n^3 + n \log n$ means it takes $h(n)$ time steps to run the algorithm for an input of size n.
Expressing Time Complexity

Given some algorithm, we want a function that counts the number of elementary steps taken by the algorithm.

Obviously, we cannot always predict the input to the algorithm.

In a sequential search for key on array A:

<table>
<thead>
<tr>
<th>input</th>
<th># of times A[] is accessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A[0]=key</td>
<td>1</td>
</tr>
<tr>
<td>A[n/2]=key</td>
<td>n/2</td>
</tr>
<tr>
<td>A[n−1]=key</td>
<td>n</td>
</tr>
</tbody>
</table>
Analysis Measures

- We can examine different measures of the runtime:
 - best-case time
 - average-case time
 - worst-case time

- Most often we examine worst-case time to get an upper bound on the behaviour of the algorithm.

- Thus, we take an algorithm, examine its worst-case (slowest) behaviour, and count the number of steps required.

- We use a model that counts the number of statements that access or modify data.
Guideline for Time Complexity

In order to analyze the time complexity of an algorithm:

- Consider the **worst-case** scenario
- Count the number of time steps (statements that access/modify data) in that scenario
- Express the number as a function of input size \(n \)
Sequential Search

- What is the worst-case time complexity of sequential search?

```java
int n = A.length;  // A 2 steps
int i = 0;
while (i < n) {
    if (A[i] == key)  // B 2 steps (worst case)
        break;
    i++;
}
return i;
```

- Either branch of the if statement requires two steps.
- The while loop iterates \(n \) times (in the worst case).

\[
f(n) = \underbrace{2}_{A} + \underbrace{\sum_{i=0}^{n-1} 2}_{B} = \underbrace{2 + \sum_{i=0}^{n-1} 2}_{C} = 2n + 2
\]

- In the worst case, given an input of size \(n \), our sequential search algorithm requires \(2n + 2 \) steps.
Selection Sort

- A ‘bad’ but easy way to sort elements of an array

```java
// preconditions: A[0..n-1] is an array of ints

void sort( int [] A ) {
     int n = A.length; 
     for ( int x = 0 ; x < n-1 ; x++ ) {
         for ( int y = x+1 ; y < n ; y++ ) {
                 int temp = A[x];
                 A[x] = A[y];
                 A[y] = temp;
             }
         }
     }
}
```

- What is the worst case?
 - Assume we perform a swap on every iteration.
Selection Sort Analysis

- Again, we count the time steps required in the worst case.

\[
g(n) = \underbrace{1}_A + \sum_{x=0}^{n-2} \left[\sum_{y=x+1}^{n-1} \underbrace{4}_B \right]_C^D
\]

\[
= 1 + \sum_{x=0}^{n-2} 4(n - x - 1)
\]

\[
= 1 + 4n \sum_{x=0}^{n-2} 1 - 4 \sum_{x=0}^{n-2} x - 4 \sum_{x=0}^{n-2} 1
\]

\[
= 1 + 4n(n - 1) - \frac{4(n - 1)(n - 2)}{2} - 4(n - 1)
\]

\[
= 2(n^2 - n) + 1
\]
Comparing the Running Time of Algorithms

- Different algorithms that solve the same problem have different running times.
- Let's assume a CPU performs one million instructions per second. When the input size is $n = 1000$, the running time of algorithms with the following time complexity varies greatly:

<table>
<thead>
<tr>
<th>time complexity</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td>6.9 microseconds</td>
</tr>
<tr>
<td>n</td>
<td>1 millisecond</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>6.9 milliseconds</td>
</tr>
<tr>
<td>n^2</td>
<td>1 second</td>
</tr>
<tr>
<td>n^3</td>
<td>16 minutes</td>
</tr>
<tr>
<td>2^n</td>
<td>$3.4 \cdot 10^{287}$ years</td>
</tr>
<tr>
<td>$n!$</td>
<td>$1.3 \cdot 10^{2554}$ years</td>
</tr>
</tbody>
</table>
Issues with Measuring the Actual Time

- It is not always easy/feasible to measure the time.
- Various factors make it difficult to compare a program’s execution on different computers or with different input sizes.
 - Hardware
 - Operating system
 - Programming language
 - Compiler (and its optimizations).
Advantages of Big-Oh Notation

- Big-Oh notation provides a simpler way to express a function (such as the running time of an algorithm), enabling easier comparison against other functions.

- For example, expressing the running time of an algorithm as $O(n^2)$ is simpler than say:

$$f(n) = \begin{cases}
200n^2 + 100n \log n + 50n + 400 & \text{if } n < 10 \\
400n + 5000 & \text{if } n \geq 10 \text{ and } n < 100 \\
50n^2 + 2\sqrt{n} + 1 & \text{if } n \geq 100
\end{cases}$$

- Saying $f(n) \in O(n^2)$ summarizes how quickly $f(n)$ can grow as n increases.
Advantages of Big-Oh Notation (cntd)

- Big-Oh allows us to compare algorithms easily.

\[
\begin{align*}
\text{Algorithm 1} & \\
\text{int } x & = 0; \\
\text{int } y & = 0; \\
\text{for } (\text{int } i=0 ; i<n ; i++) & \{ \\
\text{for } (\text{int } j=0 ; j<n ; j++) & \{ \\
& x += 2; \\
& y += x*2; \\
& \}
\}
\text{f}(n) = 2 + 2n^2 \\
\Rightarrow f(n) \in O(n^2) \text{ and } f(n) \notin O(n)
\end{align*}
\]

\[
\begin{align*}
\text{Algorithm 2} & \\
\text{int } x & = 0; \\
\text{int } y & = 0; \\
\text{for } (\text{int } i=0 ; i<n ; i++) & \{ \\
& x += 2; \\
\text{for } (\text{int } j=0 ; j<n ; j++) & \{ \\
& y += 2*j;
\}
\}
\text{g}(n) = 2 + 2n \\
\Rightarrow g(n) \in O(n)
\end{align*}
\]

- Algorithm 2 is asymptotically faster than Algorithm 1.
Simplifying Functions

- As n grows asymptotically, the largest-order term in function $f(n)$ contributes nearly all of the growth to $f(n)$.

 $$f(n) = 1000n^2 + 5000n + 2000$$

 is surpassed by

 $$g(n) = \frac{1}{1000} n^3$$

 at $n \approx 10^6$.

In other words, as n grows,

- low-order terms don’t matter ($5000n + 2000 \in f(n)$), and
- constants don’t matter (1000 in $f(n)$ and $1/1000$ in $g(n)$).

 What matters is that n^3 is of higher order than n^2.
Largest Order Terms

- These highest-order terms define an ordering.

As n grows asymptotically, the largest-order terms assume the following ordering, regardless of low-order terms and constants:

\[
1 < \log n < n^{1/4} < n^{1/3} < \sqrt{n} < n < n \log n < n \log^2 n < n \sqrt{n} \\
< n^2 < n^2 \log n < n^3 < n^4 < 2^n < 3^n < 4^n < n! < n^n
\]

- Consequently, $n \in O(n)$ \hspace{1cm} $n \in O(n \sqrt{n})$ \hspace{1cm} $n \in O(n^3)$

\[n \notin O(\log n) \]

- Similarly, $15n + 2 \in O(n)$ \hspace{1cm} $15n + 2 \in O(n^2)$ \hspace{1cm} $15n + 2 \notin O(\log n)$
Time Complexity Functions

Here are some functions:

\[
\begin{align*}
 f(n) &= \frac{1}{100} n^3 + 10 n \log^2 n + 5 \sqrt{n} + 10 \\
 g(n) &= 8 n^2 \log n + 2^{4\sqrt{n}} \\
 h(n) &= \begin{cases}
 n^{3/2} + 2 \log n & \text{if } n \text{ is odd} \\
 5 n^2 + n & \text{if } n \text{ is even}
 \end{cases}
\end{align*}
\]

Here are the same functions expressed in Big-Oh notation:

\[
\begin{align*}
 f(n) &\in O(n^3) \\
 g(n) &\in O(n^2 \log n) \\
 h(n) &\in O(n^2)
\end{align*}
\]
Function $f(n)$ quickly surpasses functions $g(n)$ and $h(n)$.

The largest-order term (n^3) dominates.

The effect of constant factors (e.g., $\frac{1}{100}$) and low-order terms decreases as n grows.
We now have an intuition understanding of Big Oh.

How do we actually define \(f(n) \in O(g(n)) \)?

Requiring that \(f(n) \leq g(n) \) doesn’t work since:

- the inequality might not hold for all values of \(n \), and
- \(f(n) \) or \(g(n) \) might have constants we would prefer to ignore.

What we care about is the asymptotic behaviour of \(f(n) \) and \(g(n) \) as \(n \) grows.

How can we define an inequality similar to \(f(n) \leq g(n) \) that:

- omits constant factors, and
- only considers the highest-order term in each function?
Big O Notations

- Informally $f(n) = O(g(n))$ means f is asymptotically smaller than or equal to g.

Definition

$f(n) \in O(g(n)) \iff \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n)$

- Ignore low-order terms
- Ignore constants
Recall that function $f(n)$ is “big-Oh” of $g(n)$ iff there is some positive constant M such that for any n greater than some initial n_0, $f(n) \leq M \cdot g(n)$.
Big O Summary

- Big-oh is a tool that allows us to compare functions.
- \(O(g(n)) \) is a set of functions.
 - \(O(n^2) \), \(O(\log n) \), \(O(2^n) \) are each a set of functions.
 - Each Big-oh class represents a class of functions for which the definition holds.

Example: \(f(n) = 2n^2 + 10 \) and \(g(n) = n^2 \).

Question: Is \(f(n) \in O(g(n)) \)?
Constant Factors

- The same code can be written in different ways (depending on the programming language)

Algorithm 1

```plaintext
int x = 0;
for (int i=0 ; i<n ; i++)
    x += 2 * (A[i] + B[i++]);

running time: $f(n) = 1 + n$
```

Algorithm 2

```plaintext
int i = 0;
while (i < n) {
    int j = A[i];
    j += B[i];
    j *= 2;
    x += j;
    B[i]++;
    i++;
}

running time: $g(n) = 2 + 6n$
```

- Counting each step of a statement may increase a constant but it won't affect the asymptotic (Big Oh) running time.
Next topic is recursion.

What is recursion?
- compute one step and calls the same function to solve the remaining subproblem.

Computing $n!$. Recursive or iterative?