COMP 2140 - Data Structures

Shahin Kamali

Topic 10 - B-Trees
University of Manitoba

Partially based on notes by S. Durocher.
Overview

- Introduction to 2-3 trees
- b-trees as an extension of 2-3 trees
- Dictionary Operations on 2-3 trees and b-trees
2-3 Trees

- A **ternary tree** is a tree in which each node has at most 3 children.
- A 2-3 Tree is a ternary tree like a BST with additional structural properties:
 - Every node either contains **one KVP** and **two children**, or **two KVPs** and **three children**.
 - All the leaves are at the same level (A leaf is a node with empty children.)
Search in a 2-3 tree

- Searching through a 1-node is just like in a BST.
- For a 2-node, we must examine both keys and follow the appropriate path.
Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
 - First, we search to find the leaf where the new key belongs.
 - If the leaf has only 1 KVP, just add the new one to make a 2-node.
 - Otherwise, order the three keys as $a < b < c$.
 Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.

Example:
Deletion from a 2-3 Tree

- As with BSTs and AVL trees, we first swap the KVP with its successor → this way we always delete from a leaf.

- Say we’re deleting KVP x from a node V:
 - If V is a 2-node, just delete x.
 - Else If V has a 2-node immediate sibling U, perform a transfer:
 Put the “intermediate” KVP in the parent between V and U into V, and replace it with the adjacent KVP from U.
 - Otherwise, we merge V and a 1-node sibling U:
 Remove V and (recursively) delete the “intermediate” KVP from the parent, adding it to U.
2-3 Tree Deletion

Example:

```
<table>
<thead>
<tr>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>48</td>
</tr>
</tbody>
</table>
```

Graph:

```
36
/   
25   43
|     |
18  21
/     /
12  19  24
|     |
28  33
|     |
39  42
/     /
48  56  62
```
B-Trees

- A **B-tree of minsize** d is a search tree satisfying:
 - Each node contains at most $2d$ KVPs.
 - Non-root nodes contain at least d KVPs (root can have 1 or more).
 - All the leaves are at the same level.

- Some people call this a B-tree of order $(2d + 1)$, or a $(d + 1, 2d + 1)$-tree.
 - The 2-3 Tree is a specific type of B-tree with $d = 1$.
 - Here is a tree with $d = 2$:

```
                    24
                   /  \
                  /    \
               10    35 42 50
              /  \
             /    \
            18   35 42
           /  \
          /    \
         12 17 35
        /  \
       /    \
      5 7 19 21 22
```
B-Tree Operations

- *search, insert, delete* work just like for 2-3 trees.
 - As before, *insert might* result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).
 - For *delete*, if there is an overflow, we check if any direct sibling has an extra key; if it does not, we merge by creating a node containing the underflowed node (with $d - 1$ keys), the key at parent (1 key), and direct sibling (d keys). The new key will have size $2d$.
Height of a B-tree

What is the least number of KVPs in a height-h B-tree?

<table>
<thead>
<tr>
<th>Level</th>
<th>#Nodes is \geq</th>
<th>Node size is \geq</th>
<th>KVPs is \geq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>d</td>
<td>$2d$</td>
</tr>
<tr>
<td>2</td>
<td>$2(d + 1)$</td>
<td>d</td>
<td>$2d(d + 1)$</td>
</tr>
<tr>
<td>3</td>
<td>$2(d + 1)^2$</td>
<td>d</td>
<td>$2d(d + 1)^2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>h</td>
<td>$2(d + 1)^{h-1}$</td>
<td>d</td>
<td>$2d(d + 1)^{h-1}$</td>
</tr>
</tbody>
</table>

Total: $n \geq 1 + \sum_{i=0}^{h-1} 2d(d + 1)^i = 2(d + 1)^h - 1$

$\rightarrow \log(n + 1) \geq 1 + h \log(d + 1) \rightarrow h \leq \frac{\log(n + 1) - 1}{\log(d + 1)} = O\left(\frac{\log n}{\log d}\right)$

Therefore height of tree with n nodes is $O\left(\frac{\log n}{\log d}\right)$.
Analysis of B-tree operations

- Assume each node stores its KVPs and child-pointers in a dictionary that supports $O(\log d)$ search, insert, and delete.

- Then search, insert, and delete work just like for 2-3 trees, and each require $\Theta(\text{height})$ node operations.

- Total cost is $O\left(\frac{\log n}{\log d} \cdot (\log d)\right) = O(\log n)$.
Tree-based data structures have poor memory locality:
If an operation accesses m nodes, then it must access m spaced-out memory locations.

Observation: Accessing a single location in external memory (e.g. hard disk) automatically loads a whole block (or “page”).

In an AVL tree or 2-3 tree, $\Theta(\log n)$ pages are loaded in the worst case for a single insert/delete/search operation.

If d is small enough so a $2d$-node fits into a single page, then a B-tree of minsize d only loads $\Theta((\log n)/(\log d))$ pages.

This can result in a huge savings: memory access is often the largest time cost in a computation.
B-tree variations

Max size $2d + 1$: Permitting one additional KVP in each node allows *insert* and *delete* to avoid *backtracking* via *pre-emptive splitting* and *pre-emptive merging*.

Red-black trees: Identical to a B-tree with minsize 1 and maxsize 3, but each 2-node or 3-node is represented by 2 or 3 binary nodes, and each node holds a “color” value of red or black.

B⁺-trees: All KVPs are stored at the leaves (interior nodes just have keys), and the leaves are linked sequentially.