COMP 2140 - Data Structures

Shahin Kamali

Topic 4 - Recursion

University of Manitoba

Based on notes by S. Durocher.
Overview

- what is recursion?
- recursion vs. iteration
- analyzing the running time of recursive algorithms
Recursion

- The term **recursion** refers to a method that calls itself.
- Recursion is a powerful programming technique that results in efficient algorithms with concise descriptions.
Recursion example

Suppose we replace every line segment by eight shorter line segments according to the following geometric rule:
Recursion example

- Suppose we replace every line segment by eight shorter line segments according to the following geometric rule:

- By applying this rule recursively we obtain the following “fractal”:
Fractals are beautiful “creatures” often built on the recursion principle:
Iteration versus Recursion

- An iterative algorithm for solving a problem P makes use of a loop to compute a sequence of analogous steps that solve P.

\[n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1. \]
Iteration versus Recursion

- An iterative algorithm for solving a problem P makes use of a loop to compute a sequence of analogous steps that solve P.

$$n! = n(n - 1)(n - 2) \ldots 3 \cdot 2 \cdot 1$$
Iteration versus Recursion

- An iterative algorithm for solving a problem P makes use of a loop to compute a sequence of analogous steps that solve P.

$$n! = n(n - 1)(n - 2) \ldots 3 \cdot 2 \cdot 1$$

- A recursive algorithm for solving a problem P computes one step and calls itself to solve the remaining subproblem.
Iteration versus Recursion

- An iterative algorithm for solving a problem P makes use of a loop to compute a sequence of analogous steps that solve P.

$$n! = n(n - 1)(n - 2) \ldots 3 \cdot 2 \cdot 1$$

- A recursive algorithm for solving a problem P computes one step and calls itself to solve the remaining subproblem.

$$n! = \begin{cases}
1 & n \leq 1 \\
(n(n - 1))! & n > 1
\end{cases}$$
Iteration versus Recursion

- an iterative algorithm for computing n!:
  ```java
  int factorialIterative(int n) {
      int result = 1;
      for (int i = 1 ; i <= n ; i++)
          result *= i;
      return result;
  }
  ```
Iteration versus Recursion

- An iterative algorithm for computing \(n! \):

```c
int factorialIterative(int n) {
    int result = 1;
    for (int i = 1; i <= n; i++)
        result *= i;
    return result;
}
```

- A recursive algorithm for computing \(n! \):

```c
int factorialRecursive(int n) {
    int result = 1;
    if (n > 1) result = n * factorialRecursive(n - 1);
    return result;
}
```
Tracing a Recursive Function Call

```java
factorialRecursive(5) = 5 * factorialRecursive(4);
factorialRecursive(4) = 4 * factorialRecursive(3);
factorialRecursive(3) = 3 * factorialRecursive(2);
factorialRecursive(2) = 2 * factorialRecursive(1);
factorialRecursive(1) = 1;
```

For the factorial problem, both iterative and recursive functions run in time linear to n.
The Fibonacci numbers are the sequence

0, 1, 1, 2, 3, 8, 13, 21, 34, 55, ...
The Fibonacci numbers are the sequence

0, 1, 1, 2, 3, 8, 13, 21, 34, 55, …

The first two numbers in the sequence are 0 and 1.

Each succeeding number (third, fourth, …) is defined as the sum of the two numbers that precede it in the sequence.
Fibonacci numbers

- The Fibonacci numbers are the sequence

 \[0, 1, 1, 2, 3, 8, 13, 21, 34, 55, \ldots\]

- The first two numbers in the sequence are 0 and 1.
- Each succeeding number (third, fourth, ...) is defined as the sum of the two numbers that precede it in the sequence.
- That is, Fibonacci numbers are defined recursively:

\[
\text{fib}(n) = \begin{cases}
0 & n = 0 \\
1 & n = 1 \\
\text{fib}(n) + \text{fib}(n - 1) & n > 1
\end{cases}
\]
A Recursive Solution

```c
int fib(int n) {
    int result = 0;

    if (n == 1)
        result = 1;
    else if (n > 1)
        result = fib(n-1) + fib(n-2);

    return result;
}
```

Unlike our solution for computing factorial numbers, every call to fib generates *two recursive calls*.
Recursion Tree

\[
\begin{align*}
\text{fib}(5) & : 5 \\
\text{fib}(4) & : 3 \\
\text{fib}(3) & : 2 \\
\text{fib}(2) & : 1 \\
\text{fib}(1) & : 1 \\
\text{fib}(0) & : 0
\end{align*}
\]
This implementation of Fibonacci numbers is inefficient because it recomputes values that have already been found.
This implementation of Fibonacci numbers is inefficient because it recomputes values that have already been found.

A more efficient solution can be obtained by storing Fibonacci numbers that have already been computed in an array.
int fib2(int n) {
 int [] F = new int [n+1];
 for (int i = 0 ; i < n + 1 ; i++) F[i] = -1;
 return fibMemo(n, F);
}

int fibMemo(int n, int [] F) {
 if (n <= 1) F[n] = n;
 else if (n > 1 && F[n] == -1)
 F[n] = fibMemo(n-1, F) + fibMemo(n-2, F);
 return F[n];
}
Efficient Fibonacci Computation

```java
int fib2(int n) {
    int [] F = new int [n+1];
    for (int i = 0; i < n + 1; i++) F[i] = -1;
    return fibMemo(n, F);
}

int fibMemo(int n, int [] F) {
    if (n <= 1) F[n] = n;
    else if (n > 1 && F[n] == -1)
        F[n] = fibMemo(n-1, F) + fibMemo(n-2, F);
    return F[n];
}
```

- fib2 is a public function:
 - It calls its private fibMemo function.
 - fib2 just initializes all values to -1
 - A value of -1 for entry $F[i]$ means the Fibonacci number of i is not computed yet.
Recursion Tree

- Blue numbers indicate the order at which the functions are called.
- When the value of $F[i]$ is not -1 (is already computed), the recursion functions are not called (the calculated number is returned).
Recursion Tree for Efficient Recursion Trees

For large values of n, the tree looks like this:

- Nodes with the same color are calling the same function (with the same parameter)
A tail call is a method B called inside a method A, whose return value is immediately returned by the calling method A.

```java
int methodA(int x) {
    int y = x + 2;
    return methodB(y);
}
```

No code is executed in the calling method A after returning from the method call to B.
A **tail call** is a method B called inside a method A, whose return value is immediately returned by the calling method A.

```java
int methodA(int x) {
    int y = x + 2;
    return methodB(y);
}
```

- No code is executed in the calling method A after returning from the method call to B.
- Advantage: no need to store local variables on the call stack. A tail recursive algorithm uses tail calls.
Tail Recursion

- A tail call to the same function!
 - Tail recursion often requires an additional parameter that accumulates a partial solution.
Tail Recursion

- A tail call to the same function!
- Tail recursion often requires an additional parameter that accumulates a partial solution.
- E.g.: summing integer values in a linked-list using tail recursion:
 - Here partialSum accumulates partial solution!

```java
int listSumTail(Node node) {
    return listSumTailHelper(0, node);
}

int listSumTailHelper(int partialSum, Node node) {
    int result = partialSum;

    if (node != null)
        result = listSumTailHelper(partialSum + node.getValue(),
                                   node.getNext());

    return result;
}
```
Tail Recursion

- A tail call to the same function!
 - Tail recursion often requires an additional parameter that accumulates a partial solution.
- E.g.: summing integer values in a linked-list using tail recursion:
 - Here `partialSum` accumulates partial solution!

```java
int listSumTail(Node node) {
    return listSumTailHelper(0, node);
}

int listSumTailHelper(int partialSum, Node node) {
    int result = partialSum;
    if (node == null) return partialSum;
    else if (node != null) {
        result = listSumTailHelper(partialSum + node.getValue(), node.getNext());
    }
    return result;
}
```
Tail Recursion

summing integer values in a linked-list without using tail recursion:

```java
int listSum(Node node) {
    int result = 0;

    if (node != null)
        result = node.getValue() + listSum(node.getNext());

    return result;
}
```
Tail Recursion

- summing integer values in a linked-list using tail recursion:

- summing integer values in a linked-list without using tail recursion:
Tail Recursion Summary

- When writing a recursive code, consider applying the tail recursion.
Tail Recursion Summary

- When writing a recursive code, consider applying the tail recursion.
- Tail recursion can significantly improve the memory usage of your algorithm (in the stack memory).
Tail Recursion Summary

- When writing a recursive code, consider applying the tail recursion.
- Tail recursion can significantly improve the memory usage of your algorithm (in the stack memory).
- The time complexity does not change (asymptotically).
- You often need to pass partial solutions in the recursive calls.
Recursion vs. Iteration

- Every recursive algorithm can be written iteratively.
Recursion vs. Iteration

- Every recursive algorithm can be written iteratively.
- A recursive algorithm (what does it do?)

```java
void recursiveFn(int n) {
    System.out.println("n = " + n);
    if (n > 1)
        recursiveFn(n/2);
}
```
Recursion vs. Iteration

- **Every recursive algorithm can be written iteratively.**

- A recursive algorithm (what does it do?)

```java
void recursiveFn(int n) {
    System.out.println("n = " + n);
    if (n > 1)
        recursiveFn(n/2);
}
```

- Iterative version of the same algorithm

```java
void iterativeFn(int n) {
    for (int i = n ; i >= 1 ; i /= 2)
        System.out.println("n = " + i);
}
```
Recursion vs. Iteration

- Every recursive algorithm can be written iteratively.
- A recursive algorithm (what does it do?)

```java
void recursiveFn(int n) {
    System.out.println("n = " + n);
    if (n > 1)
        recursiveFn(n/2);
}
```

- Iterative version of the same algorithm

```java
void iterativeFn(int n) {
    for (int i = n ; i >= 1 ; i /= 2)
        System.out.println("n = " + i);
}
```

- These two algorithms run in the same time!
Recursion vs. Iteration

- What is the running time of iterativeFn?

On the first iteration:
\[i = n \]

On the second iteration:
\[i = n / 2 \]

On the third iteration:
\[i = n / 4 \]

On the fourth iteration:
\[i = n / 8 \]

...

On the \(k \)th iteration:
\[i = n^{2k-1} \]

...

On the last iteration:
\[i = 1 \]

The loop stops when:
\[i < 1 \]

\[n^{2k-1} < 1 \]

\[\log n < k - 1 \]

\[k > \log n + 1 \]

Therefore, the loop iterates \(\log n + 1 \) times!

Remember! \(\log n \) always means \(\log_2 n \)
Recursion vs. Iteration

- What is the running time of iterativeFn?
- How many times does the for loop iterate?
 - On the first iteration $i = n$
 - On the second iteration $i = n/2$
 - On the third iteration $i = n/4$
 - On the fourth iteration $i = n/8$
 - ...
 - On the kth iteration $i = \frac{n}{2^{k-1}}$
 - ...
 - On the last iteration $i = 1$

Therefore, the loop iterates $\log n + 1$ times!

Remember! $\log n$ always mean $\log_2(n)$
Recursion vs. Iteration

- What is the running time of iterativeFn?
- How many times does the for loop iterate?
 - On the first iteration $i = n$
 - On the second iteration $i = n/2$
 - On the third iteration $i = n/4$
 - On the fourth iteration $i = n/8$
 - ...
 - On the kth iteration $i = \frac{n}{2^{k-1}}$
 - ...
 - On the last iteration $i = 1$
- The loop stops when $i < 1$
 \[
 \frac{n}{2^{k-1}} < 1 \rightarrow n < 2^{k-1} \rightarrow \log n < k - 1 \rightarrow k > \log n + 1
 \]
Recursion vs. Iteration

- What is the running time of iterativeFn?
- How many times does the for loop iterate?
 - On the first iteration \(i = n \)
 - On the second iteration \(i = n/2 \)
 - On the third iteration \(i = n/4 \)
 - On the fourth iteration \(i = n/8 \)
 - \(\ldots \)
 - On the \(k \)th iteration \(i = \frac{n}{2^{k-1}} \)
 - \(\ldots \)
 - On the last iteration \(i = 1 \)
- The loop stops when \(i < 1 \)
 - \(\frac{n}{2^{k-1}} < 1 \rightarrow n < 2^{k-1} \rightarrow \log n < k - 1 \rightarrow k > \log n + 1 \)
- Therefore, the loop iterates \(\log n + 1 \) times!
 - Remember! \(\log n \) always mean \(\log_2(n) \)
Determining the Running Time of Recursive Algorithms

- We don't need to rewrite a recursive algorithm as an iterative algorithm to find its running time.
- A recurrence relation can be used to express the running time of a recursive algorithm.
- Solving recurrence relations requires using a proof by induction.
- Mathematical induction and recurrence relations are covered in COMP 2080 and COMP 2130.
Next topic is sorting.

What is a **Comparison Based Sorting**?