Overview

- Review: Insertion Sort
- Merge Sort
- Quicksort
- Heapsort
- Counting Sort

For further reading, refer to Open Data Structures Book (Chapter 11)
Sorting

- **Input:**
 - a sequence of n objects: $A[0], \ldots, A[n-1]$ (typically an array or a linked list)
 - a comparison predicate, \leq, that defines a total order on A

- **Output:**
 - an ordered representation of the objects in A
Sorting

Input:
- a sequence of n objects: $A[0], \ldots, A[n − 1]$
 (typically an array or a linked list)
- a comparison predicate, \leq, that defines a total order on A

Output:
- an ordered representation of the objects in A

Many sorting algorithms exist:
- bubble sort, insertion sort, merge sort, heapsort, radix sort, bucket sort, quicksort, etc.
Insertion Sort

- Go through the items in the array (list) one by one
- For each item x at index i:
 - We know the sub-array $A[0] \ldots A[i-1]$ is sorted
 - **Insert** x in its correct position in the sub-array $A[i] \ldots A[i]$.

| 4 | 3 | 2 | 10 | 12 | 1 | 5 | 6 |
Insertion Sort

- Go through the items in the array (list) one by one
- For each item x at index i:
 - We know the sub-array $A[0] \ldots A[i - 1]$ is sorted
 - **Insert** x in its correct position in the sub-array $A[i] \ldots A[i]$.

![Insertion Sort Example]

- The **red** item is sorted, and the **green** item is inserted into its correct position.
Insertion Sort

- Go through the items in the array (list) one by one
- For each item x at index i:
 - We know the sub-array $A[0] \ldots A[i - 1]$ is sorted
 - **Insert** x in its correct position in the sub-array $A[i] \ldots A[i]$.

![Insertion Sort Diagram]

[Diagram showing the insertion of elements into a sorted array.]

```plaintext
4 3 2 10 12 1 5 6
```

```plaintext
3 4 2 10 12 1 5 6
```
Insertion Sort

- Go through the items in the array (list) one by one
- For each item x at index i:
 - We know the sub-array $A[0] \ldots A[i-1]$ is sorted
 - **Insert** x in its correct position in the sub-array $A[i] \ldots A[i]$.

![Insertion Sort Diagram]

- **Diagrams** showing the process of sorting the array.
Insertion Sort

- Go through the items in the array (list) one by one
- For each item \(x \) at index \(i \):
 - We know the sub-array \(A[0] \ldots A[i-1] \) is sorted
 - **Insert** \(x \) in its correct position in the sub-array \(A[i] \ldots A[i] \).
Insertion Sort

- Go through the items in the array (list) one by one
- For each item x at index i:
 - We know the sub-array $A[0] \ldots A[i-1]$ is sorted
 - **Insert** x in its correct position in the sub-array $A[i] \ldots A[i]$.

![Diagram showing the insertion sort process](image)
Insertion Sort

- Go through the items in the array (list) one by one
- For each item x at index i:
 - We know the sub-array $A[0] \ldots A[i-1]$ is sorted
 - Insert x in its correct position in the sub-array $A[i] \ldots A[i]$.

![Diagram of Insertion Sort Process](image-url)
Insertion Sort

- Go through the items in the array (list) one by one
- For each item x at index i:
 - We know the sub-array $A[0] \ldots A[i-1]$ is sorted
 - **Insert** x in its correct position in the sub-array $A[i] \ldots A[i]$.
Insertion Sort

- Go through the items in the array (list) one by one
- For each item x at index i:
 - We know the sub-array $A[0] \ldots A[i-1]$ is sorted
 - Insert x in its correct position in the sub-array $A[i] \ldots A[i]$.

![Diagram of Insertion Sort process]
Insertion Sort

/* Function to sort an array using insertion sort */

void insertionSort(int arr[], int n)
{
 int i, key, j;
 for (i = 1; i < n; i++)
 {
 key = arr[i];
 j = i - 1;

 /* Move elements of arr[0..i-1], that are greater than key, to one position ahead of their current position */
 while (j >= 0 && arr[j] > key)
 {
 arr[j+1] = arr[j];
 j = j - 1;
 }
 arr[j+1] = key;
 }
}
Insertion Sort Summary

- **One Iteration of the Insertion Sort Algorithm:**
 - After the ith iteration, $A[0..i]$ is sorted.
 - Insert item $A[i+1]$ in its proper place in $A[0..i]$.
Insertion Sort Summary

- **One Iteration of the Insertion Sort Algorithm:**
 - After the ith iteration, $A[0..i]$ is sorted.
 - Insert item $A[i + 1]$ in its proper place in $A[0..i]$.

- In the worst case, i items are moved in the $i + 1$th iteration!
In the worst case the array is sorted backwards.

\[\begin{array}{cccccc}
 n & n-1 & n-2 & \ldots & 3 & 2 & 1 \\
 \vdots & & & & 3 & 2 & 1 \\
 3 & 4 & 5 & \ldots & n & 2 & 1 \\
 2 & 3 & 4 & \ldots & n-1 & n & 1 \\
 1 & 2 & 3 & \ldots & n-2 & n-1 & n \\
\end{array} \]
Insertion Sort Analysis

- In the worst case the array is sorted backwards.

```
| n  | n-1  | n-2  | ... | 3  | 2  | 1 |
```

```
|     |     |     | ... | 3  | 2  | 1 |
```

```
|     |     |     | ... | 3  | 2  | 1 |
```

```
|     |     |     |     |    |    | 1 |
```

```
| 3  | 4  | 5  | ... | n  | 2  | 1 |
```

```
| 2  | 3  | 4  | ... | n-1| n  | 1 |
```

```
| 1  | 2  | 3  | ... | n-2| n-1| n |
```

- The total number of moved items:

\[1 + 2 + \ldots + n - 1 = \frac{n(n-1)}{2} \in (n^2) \]
The worst-case running time of insertion sort is $O(n^2)$.
Insertion Sort Time Complexity

- The **worst-case** running time of insertion sort is $O(n^2)$.
- As it turns out, the **average-case** running time is also $O(n^2)$.
- Faster sorting algorithms exist. These include:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>worst case</th>
<th>average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quicksort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge Sort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heapsort</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The **worst-case** running time of insertion sort is $O(n^2)$.

As it turns out, the **average-case** running time is also $O(n^2)$.

Faster sorting algorithms exist. These include:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>worst case</th>
<th>average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quicksort</td>
<td>$O(n^2)$ (random pivot)</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>
The worst-case running time of insertion sort is $O(n^2)$. As it turns out, the average-case running time is also $O(n^2)$.

Faster sorting algorithms exist. These include:

<table>
<thead>
<tr>
<th></th>
<th>worst case</th>
<th>average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quicksort</td>
<td>$O(n^2)$ (random pivot)</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>

The lower bound on the worst-case time complexity of any comparison-based sorting algorithm is also $n \log n$.