Amortized

COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 17 (Amortized Analysis)

CLRS 17-1, 17-2, 17-3, 17-4

University of Manitoba
Amortized vs Average Analysis

- Both are concerned with the cost averaged over a sequence of operations.

- Average case analysis relies on probabilistic assumptions about the input or the data structure:
 - There is an underlying probability distribution.
 - The worst-case might be met with some small chance (you can be ‘lucky’ or not).

- Amortized analysis considers a sequence of consecutive operations:
 - Bound the total cost for \(m \) operations
 - This gives the amortized cost \(B(n) \) per operation
 - The amortized cost is only a function of \(n \), the size of stored data
 - Unlike average case analysis, there is no probability distribution
 - Every sequence of \(m \) operations is guaranteed to have worst-case time at most \(mB(n) \), regardless of the input or the sequence of operations (regardless of how lucky you are).
Amortized vs Average Analysis

- Let's compare two algorithms A and B.
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take $\Theta(n)$ time in the worst case and amortized $\Theta(\log n)$.

<table>
<thead>
<tr>
<th></th>
<th>worst-case time per operation</th>
<th>average/amortized time per operation</th>
<th>worst-case time for m operations</th>
<th>average time for m operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm A</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$ average</td>
<td>$\Theta(m \cdot n)$</td>
<td>$\Theta(m \log n)$</td>
</tr>
<tr>
<td>Algorithm B</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$ amortized</td>
<td>$\Theta(m \log n)$</td>
<td>$\Theta(m \log n)$</td>
</tr>
</tbody>
</table>
Bit Counter

- Start from an initial configuration where all bits are ‘0’
- Each operation increments the encoded number
- We want to know how many bits are flipped per operation
- The \(i \)'th bit from right is flipped iff all \(i - 1 \) bits on its right are 1 before the increment \((i \geq 0)\)
 - After the flip all bits on the right will be 0.
 - In the next \(2^i - 1 \) operations after the flip the bit is not flipped.
 - The \(i \)'th bit is flipped once in \(2^i \) operations

<table>
<thead>
<tr>
<th>(\log m)</th>
<th>...</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Bit Counter

- For a sequence of m operations, the i’th bit is flipped $\frac{m}{2^i}$ times.
- Total number of flips will be at most

 $$\sum_{i=0}^{\lfloor \log m \rfloor} \frac{m}{2^i} < m \sum_{i=0}^{\infty} \frac{1}{2^i} = 2m$$

- The amortized number of flips per operation is $2 = \Theta(1)$ flips.
- The worst case number of flips is $\Theta(\log m)$; but it never happens that a sequence of m operations have $m\Theta(\log m)$ flips!
Amortized Analysis Review

- Considering a sequence of \(m \) operations for sufficiently large \(m \):
 - Some operations are more ‘expensive’ and most are ‘inexpensive’.
 - Amortized cost is the average cost over all operations
 - There is no probability distribution or randomness

- We saw the amortized number of flips when incrementing a number \(m \) times is \(\Theta(1) \)
 - Some increment operation need \(\Theta(\log m) \) flips while most operation take less flips.
 - On average, each operation needs \(\Theta(1) \) flips.
Methods for Amortized Analysis

- There are three frameworks for amortized analysis.

 Aggregate method:
 - Sum the total cost of \(m \) operations
 - Divide by \(m \) to get the amortized cost
 - This is what we did for bit flips

 Accounting method
 - Analogy with a bank account, where there are fixed deposits and variable withdrawals

 Potential method
 - Define amortized cost through potential function which maps the sequence of operations to an integer

- Let’s review these methods with an example!
Problem: implement a stack stored in an array to support push (insert) operations.

The problem is **online** in the sense that we do not know how many operations to expect.

How large the array should be? there is a trade-off:

- larger array: less likely to run out of space, more unused/wasted memory
- smaller array: more likely to run out of space, less unused/wasted memory
Dynamic Arrays

- Possible solution: allocate an array of size $a = 2n$.
- If the array runs out of space ($n > a$):
 - allocate a new array of size $2a$
 - copy all n items to the new array

<table>
<thead>
<tr>
<th>i</th>
<th>operation</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>insert(a)</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>insert(b)</td>
<td>$a \rightarrow a, b$</td>
</tr>
<tr>
<td>3</td>
<td>insert(c)</td>
<td>$a \rightarrow a, b, c$</td>
</tr>
<tr>
<td>4</td>
<td>insert(d)</td>
<td>$a \rightarrow a, b, c, d$</td>
</tr>
<tr>
<td>5</td>
<td>insert(e)</td>
<td>$a \rightarrow a, b, c, d, e$</td>
</tr>
<tr>
<td>6</td>
<td>insert(f)</td>
<td>$a \rightarrow a, b, c, d, e, f$</td>
</tr>
<tr>
<td>7</td>
<td>insert(g)</td>
<td>$a \rightarrow a, b, c, d, e, f, g$</td>
</tr>
<tr>
<td>8</td>
<td>insert(h)</td>
<td>$a \rightarrow a, b, c, d, e, f, g, h$</td>
</tr>
<tr>
<td>9</td>
<td>insert(i)</td>
<td>$a \rightarrow a, b, c, d, e, f, g, h, i$</td>
</tr>
<tr>
<td>10</td>
<td>insert(j)</td>
<td>no space: allocate array of size 2, copy 1 item</td>
</tr>
<tr>
<td>11</td>
<td>insert(k)</td>
<td>no space: allocate array of size 4, copy 2 item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no space: allocate array of size 8, copy 4 item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no space: allocate array of size 16, copy 8 item</td>
</tr>
</tbody>
</table>
Dynamic Arrays

- The worst-case cost occurs when the whole array is copied to a new array:
 - $\Theta(n)$ worst-case time per insert.

- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.
 - We can obtain a much better (smaller) bound.

- Let $c(i)$ denote the cost of the ith insertion (cost = number of insert/copies).

$$c(i) = \begin{cases}
 i & \text{if } i = 2^k + 1 \text{ for some integer } k \\
 1 & \text{if otherwise}
\end{cases}$$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>j</td>
</tr>
<tr>
<td>k</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>array size (a)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>4</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>16</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
Aggregate Method for Dynamic Arrays

- Aggregate method: find total cost of m operations and divide by m

$$c(i) = \begin{cases}
 i & \text{if } i = 2^k + 1 \text{ for some integer } k \\
 1 & \text{if otherwise}
\end{cases}$$

Cost of m insertions:

$$\sum_{i=1}^{m} c(i) \leq \sum_{i=1}^{m} \underbrace{2^i}_{\text{insert new item}} + \sum_{j=0}^{[\log(m-1)]} 2^j \underbrace{\text{copy old items to new array}}$$

$$= m + 2^{[\log(m-1)]+1} - 1$$

$$\leq m + 2^{\log m + 1} - 1$$

$$= m + 2m - 1$$

$$= 3m - 1$$

$$\in \Theta(m)$$

- The amortized cost is hence $\frac{\Theta(m)}{m} = \Theta(1)$
- The aggregate is useful for simple amortized analysis.
- Sometimes require a different technique to obtain amortized cost.
Accounting Method

- Assume you want to prove that your average (amortized) daily cost is no more than 100$.
 - Some days you might spend much more but on average it is at most 100$

- One way to do that is to assume every day 100$ is deposited into your account

- On days which you spend more than 100$, you should use accumulated credit from previous days

- If your balance remains positive at the end of each day, your average cost is at most 100$
 - In m consecutive days your expenditure has been at most $100m \rightarrow$ amortized cost at most 100$.
Accounting Method

- Accounting method overview:
 - Each operation deposits a fixed credit into an account (This amount is an upper bound on the amortized cost.)
 - Each operation uses ‘credit’ to pay its cost
 - Inexpensive operations save more than their cost
 - Expensive operations cost more more than they save
 - Account must remain positive
Accounting Method for Dynamic Arrays

We prove the amortized cost for insertion is 3

- Each operation deposits $3
- Each write/move operation costs $1
- Inexpensive insertion deposits $3 and spends $1 → $2 saved
- Expensive insertion deposits $3 and spends $m → $(m - 3)$ spent
- Number of consecutive inexpensive insertions before expensive insertion: $m/2 - 1$
- → $2(m/2 - 1) = $(m - 2) accumulated credit since last expensive insertion
- $m - 2 > m - 3$ → account remains positive

<table>
<thead>
<tr>
<th>i</th>
<th>array size (a)</th>
<th>$c(i)$</th>
<th>total deposited</th>
<th>total spent</th>
<th>available credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 1 1 1</td>
<td>3 6 9 12 15 18 21 24 27 30</td>
<td>1 3 6 7 12 13 14 15 26 27</td>
<td>2 3 3 5 3 5 7 9 1 3</td>
</tr>
</tbody>
</table>
Potential method

- Define a potential function Φ that maps the state of the structure and the index of an operation to an integer
 - Potential is basically the available credit in accounting method
 \[\hat{c}(i) = c(i) + \Phi(i) - \Phi(i - 1) \]
 - $\hat{c}(i) \rightarrow$ amortized cost of operation i
 - $c(i) \rightarrow$ actual cost of operation i

- Total amortized cost will be total cost plus a constant independent of m.
Potential Method for Dynamic Arrays

- Define the potential to be $\Phi(i) = 2i - a_i$
- a_i denotes the size of the array after operation i
- In case of an inexpensive operation, we have $c_i = 1$ and $a_i = a_{i-1}$; (the size of array does not change)
 - the amortized cost will be
 $$\hat{c}(i) = c(i) + \Phi(i) - \Phi(i - 1) = 1 + [2i - a_i] - [2(i - 1) - a_{i-1}] = 3$$
- For expensive operation i, table size changes from $a_{i-1} = (i - 1)$ to $a_i = 2(i - 1)$ and we have $c_i = i$.
 - the amortized cost will be
 $$\hat{c}(i) = c(i) + \Phi(i) - \Phi(i - 1) = i + [2i - a_i] - [2(i - 1) - a_{i-1}]$$
 $$= i + 2i - 2(i - 1) - 2i + 2 + (i - 1) = 3$$

- **Potential method is often the strongest method for amortized analysis**
Methods for Amortized Analysis

There are three frameworks for amortized analysis.

- **Aggregate method:**
 - Sum the total cost of m operations
 - Divide by m to get the amortized cost

- **Accounting method**
 - Analogy with a bank account, where there are fixed deposits and variable withdrawals

- **Potential method**
 - Define amortized cost through potential function which maps the sequence of operations to an integer

Let’s review these methods with another example!
Special Stacks

- Consider a stack with one operation $Op(n, x)$, where $n \geq 0$.

 $Op(n, x)$: pop n items from the stack and push x to it.

- What is the time complexity of each operation?

 - Assume each single push and pop has cost 1 (e.g., stack is implemented using a linked list).

 - Assume $m - 1$ operations pop nothing and the m'th operation pops everything

 - A single operation can have a cost of $\Theta(m)$ in the worst case.
 - The amortized time is much better!

```
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>op(0,a)</td>
<td>op(0,b)</td>
<td>op(0,c)</td>
<td>op(1,d)</td>
<td>op(2,e)</td>
<td>op(0,f)</td>
<td>op(0,g)</td>
<td>op(4,h)</td>
</tr>
</tbody>
</table>
```
Aggregate Method for Special Stacks

- Review of aggregate method:
 - Sum the total cost of m consecutive operations
 - Divide by m to get the amortized cost

- Unlike bit flips and dynamic arrays, we cannot predict the cost of the i’th operation.

- The aggregate method is limited and cannot help for amortized analysis of special stacks!

```
  a b a
  a b a
c
d b a
e
f e a
g f e a
h
```

```
  op(0.a) op(0.b) op(0.c) op(1.d) op(2.e) op(0.f) op(0.g) op(4.h)
```
Accounting Method for Special Stacks

- Review of accounting method:
 - Each operation comes with a fixed deposit that is added to the account (defines the amortized cost).
 - For each operation, we subtract the cost of the operation from the account:
 - Inexpensive operations contribute to the account
 - Expensive operations take away from the account
 - Iff the account is positive after each operation, the amortized cost is at most the fixed deposit.

- Often, the account can be imagined as sum of ‘credits’ assigned to different components of data structure
Accounting Method for Special Stacks

- We prove an amortized cost of 2 per operation → assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack → account is the number of items in the stack.
- $OP(n, x)$ where $n \geq 0$:
 - Pop n items: there is a credit of 1 for each item that is popped; so the cost that the algorithm pays for pops is the same as the consumed credit → account remains positive
 - Push(x): there is a cost of 1 and fixed deposit of 2; the extra saving is stored as the credit for the item.

```
   a
   b
   c
   d
   e
   f
   g

op(0,a)  op(0,b)  op(0,c)  op(1,d)  op(2,e)  op(0,f)  op(0,g)  op(4,h)
```
Accounting Method for Special Stacks

- With a fixed deposit of 2 per operation, we showed that the balance remains positive after each operation.
- The balance was the accumulated credits stored in each item in the stack.
- We conclude that the amortized cost of each operation is at most 2.

<table>
<thead>
<tr>
<th>Item</th>
<th>Operation</th>
<th>Bal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>op(0, a)</td>
<td>Bal: 1</td>
</tr>
<tr>
<td>b</td>
<td>op(0, b)</td>
<td>Bal: 2</td>
</tr>
<tr>
<td>a</td>
<td>op(0, c)</td>
<td>Bal: 3</td>
</tr>
<tr>
<td>b</td>
<td>op(1, d)</td>
<td>Bal: 3</td>
</tr>
<tr>
<td>a</td>
<td>op(2, e)</td>
<td>Bal: 2</td>
</tr>
<tr>
<td>b</td>
<td>op(0, f)</td>
<td>Bal: 3</td>
</tr>
<tr>
<td>a</td>
<td>op(0, g)</td>
<td>Bal: 4</td>
</tr>
<tr>
<td>h</td>
<td>op(4, h)</td>
<td>Bal: 1</td>
</tr>
</tbody>
</table>
Potential Method for Special Stacks

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation i to a positive number.
 - Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:
 $$\hat{c}(i) = c(i) + \Phi(i) - \Phi(i - 1)$$
- Define the potential to be the number of items in the stack
 - Assume operation i is $OP(n, x)$. The actual cost is $c(i) = n + 1$.
 - After the operation, the number of items is increased by $1 - n$, i.e., $\Phi(i) - \Phi(i - 1) = 1 - n$.
 - The amortized cost is $\hat{c}(i) = (n + 1) + (1 - n) = 2$.
More Examples of Amortized Analysis

- **Fibonacci heaps**: similar to binomial heaps except that they have a more ‘relaxed’ structure
 - Most operations can be done in constant time; for some operations, the heap should be restructured.
 - The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is $O(1)$ (champions for priority queues).

- **Dynamic lists and arrays**
 - Update a self-adjusting linked list with Move-To-Front strategy: applications in data compression
 - Splay trees: dynamic binary trees which move an accessed item closer to the root.
 - Ideal for real-world scenarios where there is **locality** in accesses
 - Dynamic optimality conjecture: the amortized cost of accessing an item in a splay tree is within a constant ratio of any other tree (a challenging open question).

- The whole field of online algorithms!