Lecture 17 (Amortized Analysis)

CLRS 17-1, 17-2, 17-3, 17-4

University of Manitoba
Amortized vs Average Analysis

- Both are concerned with the cost averaged over a sequence of operations.
- Average case analysis relies on probabilistic assumptions about the input or the data structure.
 - There is an underlying probability distribution.
 - The worst-case might be met with some small chance (you can be ‘lucky’ or not).
- Amortized analysis consider consider a sequence of consecutive operations.
 - Bound the total cost for m operations.
 - This gives the amortized cost $B(n)$ per operation.
 - The amortized cost is only a function of n, the size of stored data.
 - Unlike average case analysis, there is no probability distribution.
 - Every sequence of m operations is guaranteed to have worst-case time at most $mB(n)$, regardless of the input or the sequence of operations (regardless of how luck you are).
Amortized vs Average Analysis

Let’s compare two algorithms A and B

A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.

B performs operations which take $\Theta(n)$ time in the worst case and amortized $\Theta(\log n)$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>worst-case time per operation</th>
<th>average/amortized time per operation</th>
<th>worst-case time for m operations</th>
<th>average time for m operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm A</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$ average</td>
<td>$\Theta(m \cdot n)$</td>
<td>$\Theta(m \log n)$</td>
</tr>
<tr>
<td>Algorithm B</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$ amortized</td>
<td>$\Theta(m \log n)$</td>
<td>$\Theta(m \log n)$</td>
</tr>
</tbody>
</table>
Bit Counter

- Start from an initial configuration where all bits are ‘0’
- Each operation increments the encoded number
- We want to know how many bits are flipped per operation
- The i’th bit from right is flipped iff all $i - 1$ bits on its right are 1 before the increment ($i \geq 0$)
 - After the flip all bits on the right will be 0.
 - In the next $2^i - 1$ operations after the flip the bit is not flipped.
 - The i’th bit is flipped once in 2^i operations

<table>
<thead>
<tr>
<th>Log m?</th>
<th>...</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>initial configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0 1</td>
<td>after 1st increment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 0 0 1 0</td>
<td>after 2nd increment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 1 1 1 1 1 1 1</td>
<td>after 111th increment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 0 0 0 0 0 0</td>
<td>after 112th increment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After the flip all bits on the right will be 0. In the next $2^i - 1$ operations after the flip the bit is not flipped. The i’th bit is flipped once in 2^i operations.
Bit Counter

- For a sequence of m operations, the i’th bit is flipped $\frac{m}{2^i}$ times.
- Total number of flips will be at most

$$m \sum_{i=0}^{\lfloor \log m \rfloor} \frac{1}{2^i} = 2m$$

- The amortized number of flips per operation is $2 = \Theta(1)$ flips.

The worst case number of flips is $\Theta(\log m)$; but it never happens that a sequence of m operations have $m\Theta(\log m)$ flips!
Amortized Analysis Review

- Considering a sequence of m operations for sufficiently large m:
 - Some operations are more ‘expensive’ and most are ‘inexpensive’.
 - Amortized cost is the average cost over all operations
 - There is no probability distribution or randomness
- We saw the amortized number of flips when incrementing a number m times is $\Theta(1)$
 - Some increment operation need $\Theta(\log m)$ flips while most operation take less flips.
 - On average, each operation needs $\Theta(1)$ flips.
Methods for Amortized Analysis

- There are three frameworks for amortized analysis.

 Aggregate method:
 - Sum the total cost of m operations
 - Divide by m to get the amortized cost
 - This is what we did for bit flips

 Accounting method
 - Analogy with a *bank account*, where there are *fixed deposits* and variable *withdrawals*

 Potential method
 - Define amortized cost through *potential function* which maps the sequence of operations to an integer

- Let’s review these methods with an example!
Dynamic Arrays

- Problem: implement a stack stored in an array to support push (insert) operations.

- The problem is **online** in the sense that we do not know how many operations to expect.

- How large the array should be? there is a trade-off:
 - larger array: less likely to run out of space, more unused/wasted memory
 - smaller array: more likely to run out of space, less unused/wasted memory
Dynamic Arrays

- Possible solution: allocate an array of size \(a = 2n \).
- If the array runs out of space \((n > a) \):
 - allocate a new array of size \(2a \)
 - copy all \(n \) items to the new array

\[
\begin{array}{c|c}
 i & \text{operation} \\
 1 & \text{insert}(a) \\
 2 & \text{insert}(b) \quad \text{no space: allocate array of size 2, copy 1 item} \\
 3 & \text{insert}(c) \quad \text{no space: allocate array of size 4, copy 2 item} \\
 4 & \text{insert}(d) \\
 5 & \text{insert}(e) \quad \text{no space: allocate array of size 8, copy 4 item} \\
 6 & \text{insert}(f) \\
 7 & \text{insert}(g) \\
 8 & \text{insert}(h) \\
 9 & \text{insert}(i) \quad \text{no space: allocate array of size 16, copy 8 item} \\
 10 & \text{insert}(j) \\
 11 & \text{insert}(k)
\end{array}
\]
Dynamic Arrays

- The worst-case cost occurs when the whole array is copied to a new array:
 - $\Theta(n)$ worst-case time per insert.

- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.
 - We can obtain a much better (smaller) bound.

- Let $c(i)$ denote the cost of the ith insertion (cost = number of insert/copies).

$$c(i) = \begin{cases} i & \text{if } i = 2^k + 1 \text{ for some integer } k \\ 1 & \text{if otherwise} \end{cases}$$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>array size (a)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>$c(i)$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
Aggregate Method for Dynamic Arrays

- Aggregate method: find total cost of m operations and divide by m

$$c(i) = \begin{cases}
i & \text{if } i = 2^k + 1 \text{ for some integer } k \\
1 & \text{if otherwise}
\end{cases}$$

\[
\text{Cost of } m \text{ insertions} = \sum_{i=1}^{m} c(i) \leq \underbrace{m}_{\text{insert new item}} + \underbrace{\sum_{j=0}^{[\log(m-1)]} 2^j}_{\text{copy old items to new array}}
\]

\[
= m + 2^{\lfloor \log(m-1) \rfloor + 1} - 1 \\
\leq m + 2^{\log m + 1} - 1 \\
= m + 2m - 1 \\
= 3m - 1 \\
\in \Theta(m)
\]

- The amortized cost is hence $\frac{\Theta(m)}{m} = \Theta(1)$
- The aggregate is useful for simple amortized analysis.
- Sometimes require a different technique to obtain amortized cost.
Accounting Method

- Assume you want to prove that your average (amortized) daily cost is no more than 100$.
 - Some days you might spend much more but on average it is at most 100$

- One way to do that is to assume every day 100$ is deposited into your account

- On days which you spend more than 100$, you should use accumulated credit from previous days

- If your balance remains positive at the end of each day, your average cost is at most 100$
 - In m consecutive days your expenditure has been at most $100m \rightarrow$ amortized cost at most 100$.
Accounting Method

Accounting method overview:

- Each operation deposits a fixed credit into an account (This amount is an upper bound on the amortized cost.)
- Each operation uses ‘credit’ to pay its cost
- Inexpensive operations save more than their cost
- Expensive operations cost more more than they save
- Account must remain positive
Accounting Method for Dynamic Arrays

We prove the amortized cost for insertion is 3:

- Each operation deposits $3
- Each write/move operation costs $1
- Inexpensive insertion deposits $3 and spends $1 = $2 saved
- Expensive insertion deposits $3 and spends $m \rightarrow $(m - 3) spent
- Number of consecutive inexpensive insertions before expensive insertion: \(m/2 - 1 \)
- \(\rightarrow 2(m/2 - 1) = (m - 2) \) accumulated credit since last expensive insertion
- \(m - 2 > m - 3 \rightarrow \) account remains positive

<table>
<thead>
<tr>
<th>(i)</th>
<th>array size ((a))</th>
<th>(c(i))</th>
<th>total deposited</th>
<th>total spent</th>
<th>available credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>24</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>27</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>
Potential method

- Define a potential function Φ that maps the state of the structure and the index of an operation to an integer
 - Potential is basically the available credit in accounting method
 \[
 \hat{c}(i) = c(i) + \Phi(i) - \Phi(i - 1)
 \]

 - $\hat{c}(i) \rightarrow$ amortized cost of operation i
 - $c(i) \rightarrow$ actual cost of operation i

- Total amortized cost will be total cost plus a constant independent of m.
Potential Method for Dynamic Arrays

- Define the potential to be \(\Phi(i) = 2i - a_i \)
- \(a_i \) denotes the size of the array after operation \(i \)
- In case of an inexpensive operation, we have \(c_i = 1 \) and \(a_i = a_{i-1} \); (the size of array does not change)
 - the amortized cost will be
 \[
 \hat{c}(i) = c(i) + \Phi(i) - \Phi(i - 1) = 1 + [2i - a_i] - [2(i - 1) - a_{i-1}] = 3
 \]
- For expensive operation \(i \), table size changes from \(a_{i-1} = (i - 1) \) to \(a_i = 2(i - 1) \) and we have \(c_i = i \).
 - the amortized cost will be
 \[
 \hat{c}(i) = c(i) + \Phi(i) - \Phi(i - 1) = i + [2i - a_i] - [2(i - 1) - a_{i-1}]
 = i + 2i - 2(i - 1) - 2i + 2 + (i - 1) = 3
 \]

- Potential method is often the strongest method for amortized analysis
Methods for Amortized Analysis

- There are three frameworks for amortized analysis.
- **Aggregate method:**
 - Sum the total cost of \(m \) operations
 - Divide by \(m \) to get the amortized cost
- **Accounting method**
 - Analogy with a bank account, where there are fixed deposits and variable withdrawals
- **Potential method**
 - Define amortized cost through potential function which maps the sequence of operations to an integer

 Let’s review these methods with another example!
Special Stacks

- Consider a stack with one operation $Op(n, x)$, where $n \geq 0$.

 $Op(n, x)$: pop n items from the stack and push x to it.

- What is the time complexity of each operation?

 - Assume each single push and pop has cost 1 (e.g., stack is implemented using a linked list).

- Assume $m - 1$ operations pop nothing and the m'th operation pops everything

 - A single operation can have a cost of $\Theta(m)$ in the worst case.
 - The amortized time is much better!

```
  op(0,a)  op(0,b)  op(0,c)  op(1,d)  op(2,e)  op(0,f)  op(0,g)  op(4,h)
    a       b       c       d       e       f       g       h
    a       b       a       b     e       a     e       a
```
Aggregate Method for Special Stacks

- Review of aggregate method:
 - Sum the total cost of m consecutive operations
 - Divide by m to get the amortized cost

- Unlike bit flips and dynamic arrays, we cannot predict the cost of the i’th operation.

- The aggregate method is limited and cannot help for amortized analysis of special stacks!

```
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

op(0,a) op(0,b) op(0,c) op(1,d) op(2,e) op(0,f) op(0,g) op(4,h)
```
Accounting Method for Special Stacks

- Review of accounting method:
 - Each operations comes with a **fixed deposit** that is added to the **account** (defines the amortized cost).
 - For each operation, we subtract the cost of the operation from the account
 - Inexpensive operations contribute to the account
 - Expensive operations take away from the account
 - Iff the account is positive after each operation, the amortized cost is at most the fixed deposit.

- Often, the account can be imagined as sum of ‘credits’ assigned to different components of data structure

```
+------+-+-+---+---+---+---+---+----+
|     | a  | b  | c  | d  | e  | f  | g  | h  |
+------+-+-+---+---+---+---+---+----+
| 0(a) | 0(b)| 0(c)| 0(d)| 0(e)| 0(f)| 0(g)| 0(h)|
```

```
Accounting Method for Special Stacks

- We prove an amortized cost of 2 per operation \(\rightarrow\) assume there is a fixed deposit of 2 per operation.

- Maintain this invariant: there is a credit of 1 for each item in the stack \(\rightarrow\) account is the number of items in the stack.

- \(OP(n, x)\) where \(n \geq 0\):
  - Pop \(n\) items: there is a credit of 1 for each item that is popped; so the cost that the algorithm pays for pops is the same as the consumed credit \(\rightarrow\) account remains positive
  - Push\( (x)\): there is a cost of 1 and fixed deposit of 2; the extra saving is stored as the credit for the item.
Accounting Method for Special Stacks

- With a fixed deposit of 2 per operation, we showed that the balance remains positive after each operation.
- The balance was the accumulated credits stored in each item in the stack.
- We conclude that the amortized cost of each operation is at most 2.
Potential Method for Special Stacks

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation $i$ to a positive number.
  - Potential is equivalent to the available credit after each operation in the accounting method.

- Amortized cost is the summation of actual cost and the difference in potential function:
  \[
  \hat{c}(i) = c(i) + \Phi(i) - \Phi(i - 1)
  \]

- Define the potential to be the number of items in the stack
  - Assume operation $i$ is $OP(n, x)$. The actual cost is $c(i) = n + 1$.
  - After the operation, the number of items is increased by $1 - n$, i.e., $\Phi(i) - \Phi(i - 1) = 1 - n$.
  - The amortized cost is $\hat{c}(i) = (n + 1) + (1 - n) = 2$.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c b a</th>
<th>d b a</th>
<th>e</th>
<th>f e a</th>
<th>g f e a</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>op(0,a)</td>
<td>op(0,b)</td>
<td>op(0,c)</td>
<td>op(1,d)</td>
<td>op(2,e)</td>
<td>op(0,f)</td>
<td>op(0,g)</td>
<td>op(4,h)</td>
</tr>
</tbody>
</table>

| Bal: | 1 | 2 | 3 | 3 | 2 | 3 | 4 | 1 |
More Examples of Amortized Analysis

- Fibonacci heaps: similar to binomial heaps except that they have a more ‘relaxed’ structure
  - Most operations can be done in constant time; for some operations, the heap should be restructured.
  - The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is $O(1)$ (champions for priority queues).

- Dynamic lists and arrays
  - Update a self-adjusting linked list with Move-To-Front strategy: applications in data compression
  - Splay trees: dynamic binary trees which move an accessed item closer to the root.
    - Ideal for real-world scenarios where there is locality in accesses
    - Dynamic optimality conjecture: the amortized cost of accessing an item in a splay tree is within a constant ratio of any other tree (a challenging open question).

- The whole field of online algorithms!