COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Binary Search Trees
CLRS 12.2, 12.3, 13.2, read problem 13-3
University of Manitoba
Dictionary ADT

Definition

A dictionary is a collection S of items, each of which contains a key and some data, and is called a key-value pair (KVP).

- It is sometimes called an associative array, a map, or a symbol table.
- Keys can be compared and are (typically) unique.
- We often focus on keys; associating data with keys is easy.

Operations:

- $search(x)$: return true iff $x \in S$
- $insert(x, v)$: $S \leftarrow S \cup \{x\}$
- $delete(x)$: $S \leftarrow S/\{x\}$
- additional: $join$, $isEmpty$, $size$, etc.
Optional Operations

In addition to the main operations (search, insert, delete), the followings are useful:

- \textit{predecessor}(x): return the largest \(y \in S \) such that \(y < x \)
- \textit{successor}(x): return the smallest \(y \in S \) such that \(y > x \)
- \textit{rank}(x): return the index of \(x \) in the sorted array
- \textit{select}(i): return the key at index \(i \) in the sorted array \(\rightarrow i^{th} \text{ order statistic} \)
- \textit{isEmpty}(x): return true if \(S \) is empty
Dictionaries

- Dictionary is a collection of key-value pairs with the support of
 search, insert, delete (and possibly some other operations).
- There is a total ordering of elements, i.e., keys are comparable.
- Is dictionary an abstract data type or a data structure?
 - It is an abstract data type; we did not discuss implementation.
 - Different data structures can be used to implement dictionaries.
Elementary Implementations

- Common assumptions:
 - Dictionary has \(n \) KVPs
 - Each KVP uses constant space
 - Comparing keys takes constant time

- **Unsorted array or linked list**

 \[
 \begin{align*}
 \text{search} & \quad \Theta(n) \\
 \text{insert} & \quad \Theta(1) \\
 \text{delete} & \quad \Theta(n) \text{ (need to search)}
 \end{align*}
 \]

- **Sorted array**

 \[
 \begin{align*}
 \text{search} & \quad \Theta(\log n) \\
 \text{insert} & \quad \Theta(n) \\
 \text{delete} & \quad \Theta(n)
 \end{align*}
 \]
Data Structures for Dictionaries

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Space</th>
<th>Search</th>
<th>Insert/Delete</th>
<th>Predecessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array, linked list</td>
<td>$\Theta(n + a)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)/\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>sorted array</td>
<td>$\Theta(n + a)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>sorted linked-list</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>unbalanced BST</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>balanced BST</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>hash tables</td>
<td>$\Theta(n + a)$</td>
<td>$\Theta(1)^*$</td>
<td>$\Theta(1)^*$</td>
<td>$\Theta(n + a)$</td>
</tr>
<tr>
<td>skip list</td>
<td>$\Theta(n)^*$</td>
<td>$\Theta(\log n)^*$</td>
<td>$\Theta(\log n)^*$</td>
<td>$\Theta(\log n)^*$</td>
</tr>
</tbody>
</table>

- **n**: number of KVPs.
- **a**: the length of array; when we use sorted/unordered arrays, $a \geq n$.
- **$*$**: expected time/space
Binary Search Trees (review)

Structure
A BST is either empty or contains a KVP, left child BST, and right child BST.

Ordering
Every key k in $T.left$ is less than the root key.
Every key k in $T.right$ is greater than the root key.

```
       15
     /   \
    6     25
   /     /
  10    23    29
 /     /     /
8     14   27  50
```
BST Search and Insert

\textit{search}(k) \text{ Compare } k \text{ to current node, stop if found, else recurse on subtree unless it’s empty}

\textit{insert}(k, v) \text{ Search for } k, \text{ then insert } (k, v) \text{ as new node}

Example:
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor or predecessor node and then delete
 - successor and predecessor have one or zero children (why?)
Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h =$ height of the tree $= \text{max. path length from root to leaf}$

If n items are inserted one-at-a-time, how big is h?

- Worst-case:

- Best-case:

- Average-case:
Binary Search Trees (review)

Structure A BST is either empty or contains a KVP, left child BST, and right child BST.

Ordering Every key k in $T.left$ is less than the root key. Every key k in $T.right$ is greater than the root key.
BST Search and Insert

search(\(k\)) Compare \(k\) to current node, stop if found,
else recurse on subtree unless it’s empty

insert(\(k, v\)) Search for \(k\), then insert \((k, v)\) as new node

Example:
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with success\text{\textit{or}}\text{\textit{or}} precedent\text{\textit{o}}\text{\textit{or}}\text{\textit{or}} node and then delete
 - precedent\textit{is the rightmost node on the left subtree}
 - successor\textit{is the leftmost node on the right subtree}
Binary Search Trees

- How to find max/min elements in a BST?
 - Just find the rightmost/leftmost node in $\Theta(h)$ time
- How can I print all keys in sorted order?
 - Do an in-order traversal of the tree in $\Theta(n)$ time
 - Can we do that in $o(n)$? no! we need to report an output of size n

- BSTs maintain data in sorted order, which is useful for some queries (an advantage over hash tables which scatter data).
Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are *inserted* one-at-a-time, how big is h?

- **Worst-case**: $\Theta(n)$
- **Best-case**: $\Theta(\log n)$
- **Average-case**: $\Theta(\log n)$
 (similar analysis to *quick-sort*)
Balanced BSTs

- Perfectly balanced BSTs: all nodes except for the bottom 2 levels are full (have two children).
 - Too strict for efficient BST balancing.

- Weight balanced: at each internal node \(i \), at least \(cn_i \) nodes are in its left subtree and \(cn_i \) in its right subtree, for some constant \(c \in (0, 1/2] \), where \(n_i \) denotes the number of descendants for node \(i \).

- Height balanced: heights of left and right subtrees of each internal node differ by at most \(k \), for some constant \(k \geq 1 \).
 - For AVL trees, \(k = 1 \).
 - We will assume \(k = 1 \) for the remainder of our discussion.

- Height \(\Theta(\log n) \) where \(n \) is the number of nodes in the tree.

All balanced BSTs (with respect to any of above definitions) have height \(\Theta(\log n) \)
 - We see the proof for height-balanced BSTs in a minute.
Tree height

Definition

The **height** of a node a is the length of the longest path between a and any descendent of a

- as opposed to **depth** which is the length of the path between a and the root.
- Height can be defined recursively as follows:

\[
height(a) = \begin{cases}
-1, & a = \Phi \\
1 + \max\{height(a.left), height(a.right)\} & a \neq \Phi
\end{cases}
\]

- For a height-balanced BST with $k = 1$, the balancing factor (the difference between the height of the two children) for any node is in $\{-1, 0, 1\}$.
Bounds for the height of height-balanced BSTs

Theorem

For the height $h(n)$ of a height-balanced BST (with $k = 1$) on sufficiently large n nodes we have $\log(n) - 1 < h(n) < 1.45 \log(n + 1)$

- This implies $h(n) \in \Theta(\log n)$.
- Let’s see the proof.
We want to prove $\log(n) - 1 < h(n)$.

The number of nodes in a binary search tree of height h is at most:

$$n \leq 2^{h+1} - 1 \Rightarrow \log n \leq \log(2^{h+1} - 1) < \log(2^{h+1}) = h + 1$$

Hence, we have $\log n - 1 < h$.

Upper Bound for the height of height-balanced BSTs

- We want to show $h(n) < 1.45 \log(n + 1)$.
 - Let $s(n)$ denote the minimum number of nodes in a height-balanced BST (with $k = 1$)
 - We have $s(0) = 1 \quad s(1) = 2 \quad s(2) = 4$

$$
 s(h) = \begin{cases}
 1 & h = 0 \\
 2 & h = 1 \\
 s(h - 1) + s(h - 2) + 1, & h \geq 2
\end{cases}
$$

- We can say $s(h) > F(h)$ where $F(h)$ is the h'th Fibonacci number.
 - For large n, we have $F(h) \approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{h+1} - 1$

We have $n > \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{h+1} - 1 \rightarrow \sqrt{5}(n + 1) \geq \left(\frac{1+\sqrt{5}}{2}\right)^{h+1} \rightarrow \\
\log(\sqrt{5}(n + 1)) \geq (h + 1) \log\left(\frac{1+\sqrt{5}}{2}\right) \rightarrow h < \frac{\log \sqrt{5} + \log(n+1)}{\log(1+\sqrt{5})-1} - 1 \rightarrow \\
= \frac{1}{\log(1+\sqrt{5})-1} \log(n + 1) + \frac{\log \sqrt{5}}{\log(1+\sqrt{5})-1} - 1 < 1.45 \log(n + 1)$
Bounds for the height of height-balanced BSTs

Theorem

For the height $h(n)$ of a height-balanced BST (with $k = 1$) on sufficiently large n nodes we have $\log(n) - 1 < h(n) < 1.45 \log(n + 1)$

- This implies $h(n) \in \Theta(\log n)$.
- So, it is desirable to maintain a height-balanced binary search tree (they are asymptotically the best possible BSTs).
BST Single Rotation

- Height of a height-balanced BST on n nodes is $\Theta(\log n)$
- A **self-balancing BST** maintains the height-balanced property after an insertion/deletion via **tree rotation**

Every rotation swaps parent-child relationship between two nodes (here between 2 and 4)

Tree rotation preserves the BST key ordering property.

Each rotation requires updating a few pointers in $O(1)$ time.

Original height: $\max(\text{height}(a) + 2; \text{height}(b) + 2; \text{height}(c) + 1)$

New height: $\max(\text{height}(a) + 1; \text{height}(b) + 2; \text{height}(c) + 2)$
AVL Trees

- Introduced by Adel’son-Vel’skiǐ and Landis in 1962
- An AVL Tree is a height-balanced BST
 - The heights of the left and right subtree differ by at most 1.
 - (The height of an empty tree is defined to be -1.)
- At each non-empty node, we store $height(R) - height(L) \in \{-1, 0, 1\}$:
 - -1 means the tree is left-heavy
 - 0 means the tree is balanced
 - 1 means the tree is right-heavy
- We could store the actual height, but storing balances is simpler and more convenient.
AVL insertion

To perform $\text{insert}(T, k, v)$:

- First, insert (k, v) into T using usual BST insertion
- Then, move up the tree from the new leaf, updating balance factors.
- If the balance factor is $-1, 0, \text{ or } 1$, then keep going.
- If the balance factor is ± 2, then call the fix algorithm to “rebalance” at that node.
How to “fix” an unbalanced AVL tree

Goal: change the *structure* without changing the *order*

Notice that if heights of A, B, C, D differ by at most 1, then the tree is a proper AVL tree.
Right Rotation

When the followings hold, we apply a **right rotation** on node z:
- The balance factor at z is -2.
- The balance factor of y is 0 or -1.

Note: Only two edges need to be moved, and two balances updated.
When the followings hold, we apply a **left rotation** on node z

- The balance factor at z is 2.
- The balance factor of y is 0 or 1.

Again, only two edges need to be moved and two balances updated.
Pseudocode for rotations

\begin{center}
\begin{tabular}{|l|}
\hline
\textbf{rotate-right}(T) \\
\hline
\textit{T: AVL tree} \\
\hline
\textbf{returns rotated AVL tree} \\
\hline
1. \hspace{0.5cm} \textit{newroot} \leftarrow \textit{T}.left \\
2. \hspace{0.5cm} \textit{T}.left \leftarrow \textit{newroot}.right \\
3. \hspace{0.5cm} \textit{newroot}.right \leftarrow \textit{T} \\
4. \hspace{0.5cm} \textbf{return} \hspace{0.5cm} \textit{newroot} \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|l|}
\hline
\textbf{rotate-left}(T) \\
\hline
\textit{T: AVL tree} \\
\hline
\textbf{returns rotated AVL tree} \\
\hline
1. \hspace{0.5cm} \textit{newroot} \leftarrow \textit{T}.right \\
2. \hspace{0.5cm} \textit{T}.right \leftarrow \textit{newroot}.left \\
3. \hspace{0.5cm} \textit{newroot}.left \leftarrow \textit{T} \\
4. \hspace{0.5cm} \textbf{return} \hspace{0.5cm} \textit{newroot} \\
\hline
\end{tabular}
\end{center}
Double Right Rotation

- When the followings hold, we apply a **double right rotation** on \(z \):
 - The balance factor at \(z \) is -2 & the balance factor of \(y \) is 1.

```
  z
 /   \
 y---- x
 |   |
 A-- D
```

- First, a left rotation on the left subtree (\(y \)).
- Second, a right rotation on the whole tree (\(z \)).
Double Left Rotation

This is a double left rotation on node z; apply when balance of z is 2 and balance of y is -1.

Right rotation on right subtree (y), followed by left rotation on the whole tree (z).
Fixing a slightly-unbalanced AVL tree

Idea: Identify one of the previous 4 situations, apply rotations

```plaintext
fix(T)
T: AVL tree with \( T.balance = \pm 2 \)
returns a balanced AVL tree
1. if \( T.balance = -2 \) then
2. if \( T.left.balance = 1 \) then
3. \( T.left \leftarrow \text{rotate-left}(T.left) \)
4. return \( \text{rotate-right}(T) \)
5. else if \( T.balance = 2 \) then
6. if \( T.right.balance = -1 \) then
7. \( T.right \leftarrow \text{rotate-right}(T.right) \)
8. return \( \text{rotate-left}(T) \)
```
AVL Tree Operations

search: Just like in BSTs, costs $\Theta(height)$

insert: Shown already, total cost $\Theta(height)$

fix will be called *at most once*.

delete: First search, then swap with successor (as with BSTs), then move up the tree and apply fix (as with $insert$).

fix may be called $\Theta(height)$ times.

Total cost is $\Theta(height)$.

AVL tree examples

Example:

```
22
  /\-1
10 / 31
  /\ /\ |
 4 / 14 / 28 / 37
  /\ /\ /\ /\ |
 6 / 13 / 18 / 46
```

The AVL tree is balanced around the root node 22.
AVL tree analysis

- Since AVL-trees are height-balanced, their height is $\Theta(\log n)$ (previous class)
- Search can be done as before (no need for rebalancing)
- $\text{Insert}(x)$ takes $\Theta(\log n)$ and involves at most one fix.
- $\text{Delete}(x)$ takes $\Theta(\log n)$ and involves at most $\Theta(\log n)$ fixes.

\Rightarrow search, insert, delete all cost $\Theta(\log n)$.

- What about other queries (e.g., get-max(), get-min(), rank(), select())?
- One great thing about AVL trees is that they can be easily augmented to support these queries in a good time (this is the main advantage of the trees over say Hash tables).
Augmented Data Structures

- In practice, it often happens that you want an abstract data type to support additional queries
 - To implement this, we need to **augment** the underlying data structure
 - Augmentation often involves storing additional data which facilitates the query.
- Consider AVL tree which supports search, insert, delete in $\Theta(\log n)$ time
 - What if your ‘boss’ asks you to **additionally** support minimum, maximum, rank, and select?
 - Without augmentation, minimum and maximum take $\Theta(\log n)$ while rank and select require linear time (in-order traversal to retrieve the sorted list of keys).
 - What if your angry boss wants them to be faster?
Augmenting Data Structures

- First, figure out what additional information should be stored?
- Second, figure out how, using the additional information, answer new queries (e.g., min and rank in AVL trees) efficiently?
- Third, figure out how to update existing operations (e.g., insertion and deletion) to keep the stored information updated.
Augmenting AVL trees

- We can augment AVL trees to support minimum/maximum in $\Theta(1)$.
- Just add a pointer to the leftmost/rightmost leaf of the tree.
- After updating the tree by an insert/deleted, make sure that the pointer still points to the smallest/largest element.
Augmenting AVL trees

- After an insertion, first, re-arrange the tree if required (to keep it AVL). Keep a pointer to the newly inserted element.
 - After the insertion, if the newly inserted key is less than minimum, update the minimum pointer to point to it (similar for maximum pointer).
 - It takes an additional time of $\Theta(1)$ (the insertion time is still $\Theta(\log n)$).

- Similar update for max pointer

![Augmented AVL Tree Diagram]
Augmenting AVL trees

- For deleting node \(x \), check if \(x \) is the minimum element. If so, first update the minimum pointer to the successor of \(x \).
- Finding the successor of minimum takes additional time of \(\Theta(1) \)
 - Let \(x \) be the min element before deletion; we know there is nothing on the left of \(x \).
 - The right subtree of \(x \) has zero or one node (otherwise \(x \) is unbalanced).
 - If there is an item \(y \) on the right of \(x \), then it is the successor of \(x \).
 - If \(y \) is a leaf, then its parent is the successor.
- After updating the pointer, delete as in regular AVL trees.
- Similar update for max pointer

![Diagram of AVL tree with minimum and maximum pointers highlighted.](image)
Augmenting AVL trees

Theorem

We can augment AVL trees by adding only two pointers (Θ(1)) extra space to support minimum/maximum queries in Θ(1) and without changing time complexity of other queries (insertion, deletion, and search).
Augmenting AVL trees

Can we augment AVL trees to support rank/select operations in $O(\log n)$ time?

- $rank(x)$ reports the index of key x in the sorted array of keys
- $select(i)$ returns the key with index i in the sorted array of keys

Idea 1: Store the rank of each node at that node.

- $O(\log n)$ rank and select are guaranteed (why?)
- Is it a good augment data structure? No because inserting an item (e.g., key 1 here) might require updating all stored ranks. Insertion/deletion take $\Theta(n)$. Failed!
Augmenting AVL trees

- Idea 2: At each node, store the size (no. of nodes) of the subtree rooted at that node.
 - The size of a node is the sum of the sizes of its two subtrees plus 1.
 - The size of an empty subtree is 0.

- The rank of a node \(x \) in its own subtree is the size of its left subtree.
Augmenting AVL trees

- We want to augment AVL trees to support rank/select operations in $O(\log n)$ time?
 - $\text{rank}(x)$ reports the index of key x in the sorted array of keys
 - $\text{select}(i)$ returns the key with index i in the sorted array of keys
- At each node, store the size (no. of nodes) of the subtree rooted at that node.
Selection in Augmented AVL trees

- Selection on an AVL tree augmented with size data is similar to quickselect, where the root acts as a pivot.
- Select\(i\): compare \(i\) with the rank of the root \(r\) (size of left subarray).
 - If equal, return the root \(r\)
 - if \(i < \text{rank}(\text{root})\), recursively find the same index \(i\) in the left subtree
 - if \(i > \text{rank}(\text{root})\), recursively find index \(i - \text{rank}(\text{root}) - 1\) in the right subtree

E.g., select\(5,12\) \(\rightarrow\) select\(5,7\) \(\rightarrow\) select\(2,9\) \(\rightarrow\) select\(0,11\) \(\rightarrow\) 11

is returned
Augmenting AVL trees

- To find \(\text{rank}(x) \) on an AVL tree augmented, search for \(k \).
- On the path from the root to \(x \), sum up sizes of all left sub trees
 - When searching for \(x \), when you recurs on the right subtree, add up the size of the left subtree plus one (for the current node).
 - When the node was found, add up the size of its left subtree to the computed rank.

\[
\begin{align*}
\text{rank}(16,20) & \xrightarrow{\text{left}} \text{rank}(16,12) \quad \text{res} \quad \text{res} \quad \text{res} \quad \text{res} \\
& \xrightarrow{\text{right}} \text{rank}(16,17) \xrightarrow{\text{left}} \\
\text{rank}(16,14) & \xrightarrow{\text{right}} \text{rank}(16,16) \quad \text{res} \quad \text{res} \\
& \xrightarrow{\text{right}} \text{rank}(25,28) \xrightarrow{\text{left}} \text{rank}(25,25) \quad \text{res} \\
& \text{res} \quad \text{res} \quad \text{res} \\
& \quad \text{res} \quad \text{res} \quad \text{res} \quad \text{res} \\
\end{align*}
\]
Augmenting AVL trees

\[\text{rank}(\text{searchKey}) \]

- \text{return rank}(\text{searchKey}, \text{root})

\[\text{rank}(\text{searchKey}, \text{node}) \]

- If \(\text{node} = \emptyset \) then return \(-\infty\) (node doesn’t exist).
- If \(\text{searchKey} = \text{node.key} \) then return \(\text{node.left.size} \).
- If \(\text{searchKey} < \text{node.key} \) then return \(\text{rank}(\text{searchKey}, \text{node.left}) \).
- If \(\text{searchKey} > \text{node.key} \) then return \(1 + \text{node.left.size} + \text{rank}(\text{searchKey}, \text{node.right}) \).
Updating Augmented AVL trees

- After an **insertion**, the sizes of all ancestors of the new node should be incremented; do it before fixing the tree.

- After a **deletion**, the sizes of all ancestors of the deleted node should be decremented; do it before fixing the tree.

- The 2 nodes involved in each **single rotation** must have their sizes updated. (recall that double rotation involves two single rotations)
 - Only sizes of A and B should be updated. It can be done in constant time!

\[
\begin{align*}
\alpha + \beta + \gamma + 2 & \quad \alpha + \beta + 1 \\
\alpha + \beta \quad \gamma & \quad \alpha \\
\alpha & \quad \beta \quad \gamma
\end{align*}
\]
Updating Augmenting AVL trees

- `insert(2)`: first insert the new node and update sizes of ancestors.
- After the insertion, node 3 is unbalanced, since it is left-heavy and its left child (1) is right heavy, first apply a left rotation; update the sizes of the two involved node (1 and 2).
- Now 3 is left-heavy and its left child (2) is not right-heavy; apply a single rotation between them and update their sizes.
Augmenting AVL trees

Theorem

It is possible to augment an AVL tree by storing the sizes of each subtree so that select and rank operations can be supported in $\Theta(\log n)$ time. The time complexity of other operations (search, insert, and delete) remain unchanged.

- In fact, we can merge such AVL tree with a doubly linked list to support predecessor and successor operations.
Augmented Data Structures Summary

- **Steps to Augmenting a Data Structure**
 - Specify an ADT (including additional operations to support).
 - Choose an underlying data structure.
 - Determine the additional data to be maintained.
 - Develop algorithms for new operations.
 - Verify that the additional data can be maintained efficiently during updates.