Disjoin Sets and Union-Find Structures

CLRS 21.121.4

University of Manitoba
Disjoint Sets

- Disjoint set is an abstract data type for maintaining a collection $S = \{S_1, S_2, \ldots, S_k\}$ of disjoint, non-empty sets.
 - Disjoint: there is no common element between any two sets (if a is in S_i it cannot be in S_j where $i \neq j$).
 - Dynamic: sets can be modified by make-set and union operations
 - Each set is identified by a representative element of the set.

$k = 4; \quad S_a = \{a, b, m, n\}, \quad S_c = \{c, g, h\}, \quad S_e = \{d, e, f\}, \quad S_q = \{q\}$
Disjoint Sets Operations

- **makeSet(x):**
 - Create a new set \{x\} whose only element is x.
 - By property 1 above, x cannot be an element of any other set.
 - By default, x is the representative of the new set.

E.g., **makeSet(\{p\})**

\[
k = 4; \quad S_a = \{a, b, m, n\}, \quad S_c = \{c, g, h\}, \quad S_e = \{d, e, f\}, \quad S_q = \{q\}
\]

\[S_p = \{p\}\]
Disjoint Sets Operations

- **find(x)** (also called Find-Set(x)):
 - Return the representative element of the set containing x.

 E.g., \(\text{find}(b) \rightarrow a \)
 E.g., \(\text{find}(c) \rightarrow c \)

\[k = 4; \quad \mathcal{S}_a = \{a, b, m, n\}, \mathcal{S}_c = \{c, g, h\}, \mathcal{S}_e = \{d, e, f\}, \mathcal{S}_q = \{q\}, \]
Disjoint Sets Operations

- **union**(x, y):
 - Unite the sets containing x and y.
 - Suppose set S_x contains x and set S_y contains y.
 - $S \leftarrow S \cup \{S_x \cup S_y\} - S_x - S_y$
 - Assign a representative for $x \cup y$.
 - $\text{union}(x, y)$ is equivalent to $\text{union}(\text{find}(x), \text{find}(y))$.

E.g., Union(b, d) \rightarrow merge S_a and S_e.

$$k = 4; \quad S_a = \{a, b, m, n\}, \quad S_c = \{c, g, h\}, \quad S_e = \{d, e, f\}, \quad S_q = \{q\},$$

$$\rightarrow \quad S_c = \{c, g, h\}, \quad S_q = \{q\}, \quad S_a = \{a, b, m, n, d, e, f\}$$
Disjoint Sets Operations

- **makeSet(x):**
 - Create a new set \{x\} whose only element is x.
 - By default, x is the representative of the new set.

- **find(x)** (also called Find-Set(x):)
 - Return the representative element of the set containing x.

- **union(x, y):**
 - Unite the sets containing x and y.
 - Assign a representative for \(x \cup y\).
 - \(union(x, y)\) is equivalent to \(union(find(x), find(y))\).
Applications of Disjoint Sets

- Many applications in designing algorithms
- E.g., Kruskal’s minimum spanning tree
Kruskal’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
 - Maintain MST’s connected component as disjoint sets of vertices
 - e does not form a cycle iff its endpoints are in different components
Disjoint Sets Review

- **Disjoint set** is an abstract data type for maintaining a set of disjoint sets
 - `make-set(x)`: create a new set with a single item `x` (which is not in any of the existing sets).
 - `find(x)`: returns the representative item of the set that includes `x`.
 - `union(x,y)`: removes the sets in which `x` and `y` belong to and adds a new set which is the union of deleted sets

- Disjoint sets have many applications in design of algorithms (e.g., Kruskal’s MST algorithm)
Data Structures for Disjoint Sets

- Linked lists for disjoint sets:
 - Each set is stored as a linked-list.
 - The representative element is the first element in the list.
 - In a ‘set object’, store head/tail pointers to the first/last elements.
 - Each node stores a set pointer to the set object.
Linked lists for disjoint sets

- \textbf{makeSet}(x):
 - Create a list containing one node.
 - takes \(O(1) \)
 - \(O(1) \) time

\textbf{makeSet}(q)
Linked lists for disjoint sets

- **find(x):**
 - follow the set-pointer to find the set object and get the representative element.
 - We assume we’re given a reference to \(x \).
 - It takes \(O(1) \) time

\[\text{find(h)} \rightarrow a \]
Linked lists for disjoint sets

- union(x,y):
 - Append y’s list to the end of x’s list.
 - find(x) becomes the representative of the new set.
 - Use head pointer from x’s list and tail pointer from y’s list.
 - Requires updating the set pointer for each node in y’s list, i.e., $\Theta(n)$ time per operation in the worst case (when y has size $\Theta(n)$).
 - What is the amortized cost of performing $n - 1$ union operations?

union(p,h)

$S_1 = \{x, p\}$

- head
- tail
- set object
- representative

$S_2 = \{a, h, c\}$

- head
- tail
- set object
- representative

$S_3 = \{x, p, a, h, c\}$

- head
- tail
- set object
- representative
Review of Amortized Analysis

- Amortized analysis considers the average cost per operation for a sequence of m operations.

- In many data structures, there are many different sequences of operations

 - We often consider the **worst-case amortized time**, i.e., the average cost of an operation for the worst-case sequence

 - Sometimes people look at expected amortized time which considers the average cost for a random sequence (we do not talk about it in this course)
Linked lists for disjoint sets

What is the amortized cost of performing \(n - 1 \) union operations?

The following example is a worst-case sequence which provides a lower bound.

- makeSet\((x_i)\) for \(i \in \{1, 2 \ldots, n\} \)
- union\((x_i, x_{i-1})\) for \(i \in \{n, n - 1, \ldots 2\} \), that is:
 - union\((x_n, x_{n-1})\): update 1 set-pointers
 - union\((x_{n-1}, x_{n-2})\): update 2 set-pointers
 - \(\ldots \)
 - union\((x_{n-i+1}, x_{n-i})\): \(\rightarrow \) update \(i \) set-pointers
 - \(\ldots \)
 - union\((x_2, x_1)\): updated \(n - 1 \) set-pointers

Total set-pointer updates: \(1 + 2 + 3 + \ldots + n - 1 \in \Omega(n^2) \).

- Amortized cost of the update operation is \(\Omega(n) \) in the worstcase.
- This is a worst-case amortized time, e.g., for a sequence of \(m \) operations formed by \(m \) make-sets, the amortized cost is constant.

If we simply append the second list to the end of the first list, the (worst-case) amortized time for union is \(\Theta(n) \).
Review of Linked lists for Disjoint Set

- We want to maintain a set of disjoint sets so that make-set, find, and union operations can be performed efficiently.
 - make-set(\(x\)) creates a new set \(\{x\}\).
 - find(\(x\)) returns the (representative item of) the set that \(x\) belongs to.
 - union(\(x, y\)) merges the sets that \(x, y\) belong to.

- Disjoint set via linked lists: each set is represented by a linked list
 - Each node has a set-pointer to the set object, which makes find(\(x\)) run in constant time.
 - For union(\(x, y\)), we append one list to the end of another.
 - This requires updating all set pointers of the appended list.

- We saw in the last class that if we append the second list to the first one, there are worst-case scenarios such that even amortized cost of each operation is \(\Theta(n)\).
Linked lists & Union by Weight

- What if we append the smallest list to the end of the larger list?
- In the set object, in addition to head and tail pointers, maintain a weight field which indicates the number of items in that list (set).
 - Make-set and find are as before, i.e., they take constant time per operation
 - For union, we compare the weights and append the smaller list to the end of the larger list

![Diagram of set operations]

- $S_1 = \{x, p\}$
- $S_2 = \{a, h, c\}$
- $S_3 = \{x, p, a, h, c\}$
Consider a single node u of the list. We count the number of times the set-pointer is updated for that node.

Each time the pointer of u is updated, that means that the set of u is merged with a larger set.

- The weight of the set of u is at least doubled after the merge.

If there are n items in all sets, the weight of each set is at most n.

- Each update for set-pointer of u doubles the weight of its list, and this weight cannot be more than n.
- Hence, there are at most $\lceil \log n \rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates.
Linked lists & Union by Weight

- There are at most $\lceil \log n \rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates.

- Ignoring the cost of set-pointer updates, the cost of union for other pointer updates and also find and make-set are constants $
ightarrow \Theta(m)$ cost for m operation.

- Union by Weight has a cost of $O(n \log n + m)$ for a sequence of m operations on a universe of size n.
 - The amortized cost per operation is $O(n \log n/m + 1) = O(\log n)$
 - Note that $m \geq n$ since we need m operations to make a universe of size n.

- **Union by weight (appending smaller list to the end of larger one) improves the amortized time complexity from $\Theta(n)$ to $O(\log n)$.**
Disjoint Set Forests

- A data structure for disjoint sets which is based on trees instead of lists.
 - Each set is stored as a rooted tree
 - Each node points to its parent
 - The root points to itself
 - The representative element is the root

\[S_1 = \{x, p\} \quad S_2 = \{a, h, c, f\} \]
Disjoint Set Forests

- **MakeSet(x)** takes $O(1)$ time:
 - Create a new tree containing one node x
 - $parent(x) \rightarrow x$

- **Find(x):**
 - Follow parent pointers to the root and return it.
 - $y \leftarrow x$
 - While $y \neq parent(y)$
 - $y \leftarrow parent(y)$
 - Return y
 - Time proportional to the tree’s height
Disjoint Set Forests

- **Union**(x,y) (first approach):
 - Set root of y’s tree to point to the root of x’s tree.
 - \(\text{root}_x \leftarrow \text{find}(x) \)
 - \(\text{root}_y \leftarrow \text{find}(y) \)
 - \(\text{parent}(\text{root}_y) \leftarrow \text{root}_x \).
 - Time is proportional to tree’s height

- Tree’s height can be \(\Theta(n) \) for a universe of size \(n \)
 - In the worst case, each operation takes \(\Theta(n) \).
Amortized cost of first approach

- What is the amortized cost when performing \(m \) operations?
 - If we simply make the second tree point to the first one, it takes \(\Theta(n) \) in the worst case:
 - consider the following worst-case sequence of operations:
 - \(\text{make-set}(x_i) \) for \(i \in \{1, \ldots, n\} \)
 - \(\text{union}(x_i, x_1) \) for \(i \in \{2, \ldots, n\} \).
 - after the \(i \)'th union, set of \(x_1 \) is a tree of height \(i \).
 - the total time for the \(2n - 1 \) operations is \(\sum_{i=1}^{n-1} i = n(n - 1)/2 \), i.e.,
 - the amortized cost is \(\Theta(n) \).
 - after forming this bad tree, the worst-case sequence of operations continues with \(m - 2n + 1 \) \(\text{find}(x) \) operation where \(x \) is the only leaf of the tree.

Observation

Having the second tree point to the first one for union results in the worst-case trees of height \(n \) and amortized time of \(\Theta(n) \) for each operation.
Reducing the Height of Trees

Two strategies for bounding tree heights:
- union by rank
- path compression
Union by Rank

- Attempt to attach the shorter tree to the root of the taller one
 - Similar to union-by-weight on lists

Maintain the **rank** as an upper bound for the height of each tree.

- The rank increased when both trees have the same rank

\[
\text{root}_x \leftarrow \text{find}(x); \text{root}_y \leftarrow \text{find}(y)
\]

if \(\text{rank}(ext{root}_x) > \text{rank}(ext{root}_y) \)

\[
\text{parent}(ext{root}_y) \leftarrow \text{root}_x
\]

else

\[
\text{parent}(ext{root}_x) \leftarrow \text{root}_y
\]

if \(\text{rank}(ext{root}_x) = \text{rank}(ext{root}_y) \)

\[
\text{rank}(ext{root}_y) \leftarrow \text{rank}(ext{root}_y) + 1
\]
Union by Rank

- If $\text{rank}(x) = h$, the tree rooted at x has at least 2^h nodes.
 - use induction; for the base, we know when $h = 0$, the tree contains $1 = 2^0$ nodes.
 - choose any $h > 0$ and consider the union operation in which the rank is increased from $h - 1$ to h.
 - at the time of union, both trees had rank $h - 1$
 - by induction hypothesis, they each included at least 2^{h-1} nodes.
 - then the resulting tree has at least $2 \cdot 2^{h-1} = 2^h$ nodes.
 - The number of nodes is at least 2^h since after the union, the number of nodes can be increased further.

- Since the number of nodes is at least 2^h, the height of the trees is $O(\log n)$
 - Union, find operations when we use union by rank is $O(\log n)$.
Path Compression

- A simple, effective add on to union by rank
 - Find(x) involves finding a path from x to the root of its tree
 - For each node on the path, updated its pointer to point directly to the root:


    ```
    if x ≠ parent(x)
    parent(x) ← find(parent(x))
    return parent(x)
    ```

- For each visited node, the additional work is updating one pointer.
 - Time complexity remains the same asymptotically, i.e., \(O(\log n)\).

- For any \(y\) that used to lie on the path from \(x\) to the root, any subsequent call to find(\(y\)) takes \(O(1)\) time
 - the amortized time is significantly improved.
Disjoint set data structure

- Maintain a set of disjoint forests
 - Apply union-by rank after union operation (attach the tree with smaller rank to the one with higher rank)
 - Apply path compression after find operation (update the pointer of any node on the Find path to point to the root)
 - Note that the height might change after path compression; hence we use term rank as an upper bound for height

- The amortized time for performing any operation is $O(\alpha(n))$ where $\alpha(n)$ is a very, very, very slow growing function of n similar to inverse Ackermann function.
 - For any practical reason, $\alpha(n) \leq 4$.
 - In practice (not in theory) you can support disjoint operations in constant time.
\[\alpha(n) \] **Description**

- Let \(f^{(i)}(n) \) denote \(f(n) \) iteratively applied \(i \) times to the initial value of \(n \).

\[
f^{(i)}(n) = \begin{cases}
 n & \text{if } i = 0 \\
 f(f^{(i-1)}(n)) & \text{if } i > 0
\end{cases}
\]

- E.g., if \(f(n) = 2n \), then
 \[
 f^{(0)}(n) = n = 2^0 n, \\
 f^{(1)}(n) = f(f^{(0)}(n)) = 2(n) = 2^1 n, \\
 f^{(2)}(n) = f(f^{(1)}(n)) = 2(2^1 n) = 2^2 n, \\
 \ldots \\
 f^{(i)}(n) = f(f^{(i-1)}(n)) = 2(2^{i-1} n) = 2^i n,
 \]

- E.g., if \(f(n) = 2^n \), then
 \[
 f^{(0)}(n) = n \\
 f^{(1)}(n) = f(f^{(0)}(n)) = f(n) = 2^n \\
 f^{(2)}(n) = f(f^{(1)}(n)) = f(2^n) = 2^{2n} \\
 \ldots \\
 f^i(n) = f(f^{(i-1)}(n)) = 2^{2 \cdot \ldots \cdot 2^n} \} i \text{ times}
 \]
For any $k \geq 0$ and $j \geq 1$, let

$$A_k(j) = \begin{cases}
 j + 1 & \text{if } k = 0 \\
 A^{(j+1)}_{k-1}(j) & \text{if } k > 0
\end{cases}$$

Function $A_k(j)$ is strictly increasing in both j and k

- For $j > 0$, $A_1(j) = 2j + 1$.
- For $j > 0$, $A_2(j) = 2^{j+1}(j + 1) - 1$.
- $A_3(1) = A_2^{(2)}(1) = A_2(A_2(1)) = A_2(7) = 2^8 \cdot 8 - 1 = 2^{11} - 1 = 2047$
- $A_4(1) = A_3^{(2)}(1) = A_3(A_3(1)) = A_3(2047) = A_2^{(2048)}(2047) >$
 $A_2(2047) = 2^{2048}(2048) - 1 > 2^{2048} >> 10^{80}$
- $A_4(1)$ is by far larger than the number of atoms in the universe.
\(\alpha(n) \) Description (cntd.)

- \(\alpha(n) \) is the inverse of \(A_k(n) \):
 \[\alpha(n) = \min\{k | A_k(1) \geq n\} \]

 - \(\alpha(n) \) is the lowest value of \(k \) for which \(A_k(1) \) is at least \(n \)

\[
\alpha(n) = \begin{cases}
0 & \text{for } 0 \leq n \leq 2 \\
1 & \text{for } n = 3 \\
2 & \text{for } 4 \leq n \leq 7 \\
3 & \text{for } 8 \leq n \leq 2047 \\
4 & \text{for } 2048 \leq n \leq A_4(1)
\end{cases}
\]

- For any practical purpose, \(\alpha(n) \leq 4 \).
- Theoretically, however, \(\alpha(n) \in \omega(1) \), i.e., for every constant \(c \), there is a very huge \(n \) such that \(\alpha(n) \geq c \).

- Recall that the worst-case amortized time for performing an operation (make-set, union, find) is \(\alpha(n) \).
 - This bound is tight, i.e., we cannot do better than \(\alpha(n) \).

- \(\alpha(n) \) is the smallest super-constant function that appears in algorithm analysis (there are smaller ones like \(\alpha(\alpha(n)) \) which don't appear in analysis of practical algorithms).
Disjoint Set Summary

- Disjoint sets maintain a set of disjoint sets with support of make-set(x), find(x), and union(x,y).
- The right data structure for disjoint sets is a forest of trees (one tree per set).
 - In case of a union, apply union by rank
 - In case of a find, apply path compression
- The amortized cost per operation for this data structure is $\Theta(\alpha(n))$ which is very slowly growing
 - This is the best that is possible!