Picture is from the cover of the textbook CLRS.
Asymptotic Notations in a Nutshell

Definition

\[\text{If } f(n) \in O(g(n)) \iff \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \leq M \cdot g(n) \]

Definition

\[\text{If } f(n) \in o(g(n)) \iff \forall M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) < M \cdot g(n) \]

Definition

\[\text{If } f(n) \in \Omega(g(n)) \iff \exists M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \geq M \cdot g(n) \]

Definition

\[\text{If } f(n) \in \omega(g(n)) \iff \forall M > 0, \exists n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) > M \cdot g(n) \]

Definition

\[\text{If } f(n) \in \Theta(g(n)) \iff \exists M_1, M_2 > 0, \exists n_0 > 0 \text{ s.t.} \\
\forall n > n_0, M_1 \cdot g(n) \leq f(n) \leq M_2 \cdot g(n) \]
Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
 - Binary search
- $\Theta(n) \rightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2) \rightarrow$ Quadratic complexity
 - naive sorting algorithms (Bubble sort, insertion sort)
- $\Theta(n^3) \rightarrow$ Cubic Complexity
 - naive matrix multiplication
- $\Theta(2^n) \rightarrow$ Exponential Complexity
 - The ‘algorithm’ terminates but the universe is likely to end much earlier even if $n \approx 1000.$
Techniques for Comparing Growth Rates

Assume the running time of two algorithms are given by functions \(f(n) \) and \(g(n) \) and let

\[
L = \lim_{n \to \infty} \frac{f(n)}{g(n)}
\]

Then

\[
f(n) \in \begin{cases}
 o(g(n)) & \text{if } L = 0 \\
 \Theta(g(n)) & \text{if } 0 < L < \infty \\
 \omega(g(n)) & \text{if } L = \infty
\end{cases}
\]

If the limit is not defined, we need another method.

Note that we cannot compare two algorithms using big \(O \) and \(\Omega \) notations.

E.g., algorithm \(A \) can have complexity \(O(n^2) \) and algorithm \(B \) has complexity \(O(n^3) \). We cannot state that \(A \) is faster than \(B \) (why?)
Fun with Asymptotic Notations

- Compare the grow-rate of $\log n$ and n^r where r is a positive real number.
Fun with Asymptotic Notations

- Prove that $n(s\sin(n) + 2)$ is $\Theta(n)$.
- Use the definition since the limit does not exist.
 - Define n_0, M_1, M_2 so that $\forall n > n_0$ we have $M_1 n(s\sin(n) + 2) \leq n \leq qM_2 n(s\sin(n) + 2)$.
 - $M_1 = 1/3, M_2 = 1, n_0 = 1$ work!
Fun with Asymptotic Notations

- The same relationship that holds for relative values of numbers hold for asymptotic.
 - E.g., if \(f(n) \in O(g(n)) \) [\(f(n) \) is asymptotically smaller than or equal to \(g(n) \)], then we have \(g(n) \in \Omega(f(n)) \) [\(g(n) \) is asymptotically larger than or equal to \(f(n) \)].

- In order to prove \(f(n) \in \Theta(g(n)) \), we often show that \(f(n) \in O(n) \) and \(f(n) \in \Omega(g(n)) \).

- Similarly, we have transitivity in asymptotic notations: if \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), we have \(f(n) \in O(h(n)) \).

- Max rule: \(f(n) + g(n) \in \Theta(\max\{f(n), g(n)\}) \).
 - E.g., \(2n^3 + 8n^2 + 16n \log n \in \Theta(\max\{2n^3, 8n^2, 16n \log n\}) = \Theta(n^3) \).
Fun with Asymptotic Notations

- **What is the time complexity of arithmetic sequences?**
 \[\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \]

- **What about geometric sequence?**
 \[\sum_{i=0}^{n-1} ar^i = \begin{cases}
 a \frac{1-r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1 \\
 na \in \Theta(n) & \text{if } r = 1 \\
 a \frac{r^n-1}{r-1} \in \Theta(r^n) & \text{if } r > 1
\end{cases} \]

- **What about Harmonic sequence?**
 \[H_n = \sum_{i=1}^{n} \frac{1}{i} \approx \ln(n) + \gamma \in \Theta(\log n) \] (\(\gamma\) is a constant \(\approx 0.577\))
Loop Analysis

- Identify **elementary operations** that require constant time.
- The complexity of a loop is expressed as the **sum** of the complexities of each iteration of the loop.
- Analyse independent loops separately, and then **add** the results (use “maximum rules” and simplify when possible).
- If loops are nested, start with the innermost loop and proceed outwards.
Example of Loop Analysis

Algo1 \((n)\)
1. \(A \leftarrow 0\)
2. for \(i \leftarrow 1\) to \(n\) do
3. \hspace{1em} for \(j \leftarrow i\) to \(n\) do
4. \hspace{2em} \(A \leftarrow A / (i - j)^2\)
5. \hspace{1em} \(A \leftarrow A^{100}\)
6. return \(\text{sum}\)
Example of Loop Analysis

Algo2 \((A, n)\)

1. \(max \leftarrow 0\)
2. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do}\)
3. \(\text{for } j \leftarrow i \text{ to } n \text{ do}\)
4. \(X \leftarrow 0\)
5. \(\text{for } k \leftarrow i \text{ to } j \text{ do}\)
6. \(X \leftarrow A[k]\)
7. \(\text{if } X > max \text{ then}\)
8. \(max \leftarrow X\)
9. \(\text{return } max\)
Example of Loop Analysis

Algo3 \((n)\)

1. \(X \leftarrow 0\)
2. \(\text{for } i \leftarrow 1 \text{ to } n^2 \text{ do}\)
3. \(\quad j \leftarrow i\)
4. \(\quad \text{while } j \geq 1 \text{ do}\)
5. \(\quad \quad X \leftarrow X + i/j\)
6. \(\quad \quad j \leftarrow \lfloor j/2 \rfloor\)
7. \(\quad \text{return } X\)
MergeSort

Sorting an array A of n numbers

- **Step 1:** We split A into two subarrays: A_L consists of the first $\lceil \frac{n}{2} \rceil$ elements in A and A_R consists of the last $\lfloor \frac{n}{2} \rfloor$ elements in A.

- **Step 2:** Recursively run $MergeSort$ on A_L and A_R.

- **Step 3:** After A_L and A_R have been sorted, use a function $Merge$ to merge them into a single sorted array. This can be done in time $\Theta(n)$.

MergeSort

MergeSort(A, n)
1. **if** $n = 1$ **then**
2. \hspace{1em} $S \leftarrow A$
3. **else**
4. \hspace{1em} $n_L \leftarrow \left\lceil \frac{n}{2} \right\rceil$
5. \hspace{1em} $n_R \leftarrow \left\lfloor \frac{n}{2} \right\rfloor$
6. \hspace{1em} $A_L \leftarrow [A[1], \ldots, A[n_L]]$
7. \hspace{1em} $A_R \leftarrow [A[n_L + 1], \ldots, A[n]]$
8. \hspace{1em} $S_L \leftarrow \text{MergeSort}(A_L, n_L)$
9. \hspace{1em} $S_R \leftarrow \text{MergeSort}(A_R, n_R)$
10. \hspace{1em} $S \leftarrow \text{Merge}(S_L, n_L, S_R, n_R)$
11. **return** S
The following is the corresponding sloppy recurrence (it has floors and ceilings removed):

\[
T(n) = \begin{cases}
2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\
 d & \text{if } n = 1.
\end{cases}
\]

The exact and sloppy recurrences are identical when \(n \) is a power of 2.

The recurrence can easily be solved by various methods when \(n = 2^j \). The solution has growth rate \(T(n) \in \Theta(n \log n) \).

It is possible to show that \(T(n) \in \Theta(n \log n) \) for all \(n \) by analyzing the exact recurrence.
Analysis of Recursions

- **Substitution method**
 - **Guess** the growth function and prove it using induction.
 - For merge-sort, prove $T(n) < Mn \log n$.
 - This holds for $n = 2, n = 3$ (base of induction).
 - Fix a value of n and assume the inequality holds for smaller values.
 we have $T(n) = 2T(n/2) + cn \leq 2M(n/2 \log n/2) + cn = Mn \log n - MN + cn \leq Mn \log n + cn$ (the inequality comes from induction hypothesis)

- **Limited Master theorem**

 $$T(n) = \begin{cases} a \cdot T \left(\frac{n}{b} \right) + n^c & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$

 - if $\log_b a > c$, then $T(n) \in \Theta(n^{\log_b a})$
 - if $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$
 - if $\log_b a < c$ then $T(n) \in \Theta(n^c)$