COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lower Bounds

CLRS 8.1

University of Manitoba
Assume you design an algorithm that solves a given problem P in $\Theta(n^2)$.

Further exploration fails to discover an asymptotically faster algorithm.

How can you know whether it is possible to devise a $o(n^2)$ algorithm for P?

Establish a lower bound $f(n)$ showing that every algorithm that solves problem P requires $\Omega(f(n))$ time in the worst-case.

If you can show a lower bound of $\Omega(n^2)$, then every algorithm for solving P requires $\Omega(n^2)$ in the worst-case, and your algorithm's time is asymptotically optimal.

Lower bounds are used to establish limitation of algorithms!
A lower bound $f(n)$ for a **problem** P implies that every algorithm for P runs in time $\Omega(f(n))$ in the worst-case.

- E.g., a lower bound of $n \log n$ for comparison-based sorting problem.

A lower bound $g(n)$ for an **algorithm** A implies that there are inputs for which the running time of A is $\Omega(g(n))$, i.e., in the worst-case A runs in $\Omega(g(n))$.

- E.g., a lower bound of n^2 for Bubble-sort (i.e., we show there are inputs for which Bubble-sort runs in $\Omega(n^2)$).

Our focus in this section is on **lower bounds for problems**.
Comparison-based Sorting

- Problem: sort a set of items (e.g., potatoes) by only comparing them (i.e., using a scale to compare two items).
- An array of n distinct items can be ordered in $n!$ ways.
 - This corresponds to the number of permutations of n items.
 - Sorting corresponds to identifying the permutation of a sequence of elements.
 - Once the permutation is known, the correct ordered position of each item can be restored.
A decision tree is a loopless flowchart representing all possible sequences of steps executed by an algorithm while solving a given problem.

- The **height** of the tree corresponds to the **worst-case time** required by the algorithm.
- Each **leaf** indicates one possible input (e.g., a permutation in case of sorting).

For sorting, each internal node is associated with a comparison

- For finding a lower bound for time complexity, we count the number of comparisons in the worst case, i.e., the height of any decision tree.
Decision Trees

- One possible decision tree for determining the correct sorted order of three items \(a, b, c \).
 - Tree has height 3 → the algorithm requires 3 comparisons in the worst case.
 - Every binary tree with \(3! = 6 \) leaves (possible permutation) has height at least 3.
 - Hence, every algorithm for sorting 3 elements requires at least 3 comparisons in the worst case.
An algorithm that sorts n items corresponds to a decision tree which has $n!$ leaves (each representing one permutation).

The height of a binary tree on X leaves is at least $\log_2(X)$.

The height of a binary tree on $n!$ leaves is at least $\log_2(n!)$.

(because a binary tree with height h has at most 2^h leaves.)

$log n! = log(n \cdot (n-1) \cdot (n-2) \ldots n/2 \cdot (n/2-1) \ldots 2 \cdot 1) > log(\underbrace{n/2 \cdot n/2 \ldots n/2}_{n/2\text{ times}}) = log(n/2)^{n/2} = n/2 \log(n/2) \in \Theta(n \log n)$
Reductions

• Sometimes it is difficult to establish a lower bound directly

• We can use the lower bounds for a different problem using a **reduction**

 • Reduction creates a relationship between an easy problem E and a hard problem H.
 • It has applications for deriving both lower and upper bounds.

• Steps for reduction (for a lower bound):

 I) Assume a lower bound for problem E is known
 II) Show that problem H is as hard as problem E
 III) \rightarrow The lower bound for problem E also applies to problem H.
How to show that problem \(H \) is as hard as problem \(E \)?
- Transform any instance of problem \(E \) to an instance of problem \(H \).
- Define a reduction \(f \) such that for any instance \(i \) of problem \(E \), there is an instance \(f(i) \) of problem \(H \)
 - \(x \) is a solution to \(i \) if and only if \(f(x) \) is a solution to \(f(i) \).
Assume reduction requires $O(g(n))$ time and solving problem E requires $\Omega(h(n))$ time.

- If $g(n) \in o(h(n))$, then solving problem H also requires $\Omega(h(n))$ time.
- Proof: consider otherwise, i.e., solving H requires $o(h(n))$. Then, given any instance of E, we can transform it to an instance of H (in $g(n) \in o(h(n))$ time) and solve it in $o(h(n))$. This contradicts the lower bound $\Omega(h(n))$ for E.

If Problem E is hard, then so is Problem H. A reduction allows a lower bound for Problem E to be applied to Problem H.
Assume reduction requires $O(g(n))$ time and there is an algorithm that solves problem H in $O(j(n))$ time.

- If $g(n) \in o(j(n))$, then problem E can also be solved in $O(j(n))$ time.
- Proof: consider otherwise, i.e., assume solving some instances of E requires $\omega(j(n))$. We can transform any of these instances to instances of problem H in $O(j(n))$. Hence, solving the resulting instances of problem H require $\omega(j(n))$, contradicting that any instance of H can be done in $O(j(n))$.

If Problem H is easy, then so is Problem E. A reduction allows an upper bound (algorithm) for Problem H to be applied to solve Problem E.
Reduction Summary, Applications

- Reduce any instance i of an easy problem E to an instance $f(i)$ of a hard problem H so that x is a solution for i iff $f(x)$ is a solution for $f(i)$.

- **Negative Results (lower bounds):** If Problem E is hard, then so is Problem H. A reduction allows a lower bound for Problem E to be applied to Problem H.

- **Algorithm Design:** If Problem H is easy, then so is Problem E. A reduction allows an algorithm for Problem H to solve Problem E.

- **Complexity Classes:** Group problems into equivalence classes by algorithmic difficulty (complexity zoo).
3Sum and Collinearity

- Problem E: 3SUM
 - Instance: a set S of n distinct real numbers
 - Question: Is there a subset $\{a, b, c\} \subset S$ such that $a + b + c = 0$?

- Problem H: Collinearity
 - Instance: a set P of n distinct points in the plane
 - Question: Are any three of these points collinear?
Decision Problems

- 3Sum and Collinearity are instances of decision problems which ask questions whose answers are either ‘yes’ or ‘no’.

- Many algorithmic problem can be formulated as decision problems to derive lower bounds on their complexity.
 - E.g., solving the problem “find a set \(\{a, b, c\} \subseteq S \) so that \(a + b + c = 0 \)” is at least as difficult as answering the question “Does there exist a subset \(\{a, b, c\} \subseteq S \) so that \(a + b + c = 0 \)”?
 - A lower bound on the decision problem applies to the original problem.

- When establishing lower bounds, we often consider decision versions of problems.
 - Original Problem: find the median of \(A[0 : n - 1] \)
 - Decision Variant: Is the median of \(A[0 : n - 1] \) equal to \(x \)?
 - Both have lower bound of \(\Omega(n) \).
Reducing from 3Sum to Collinearity

- Choose any instance $S = \{s_1, s_2, \ldots, s_n\}$ for 3Sum.
 - The answer is yes if 3 of these numbers sum to 0.
- Create an instance $P = \{(s_1, s_1^3), (s_2, s_2^3), \ldots, (s_n, s_n^3)\}$ of the Collinearity problem (i.e., $P = f(S)$).
 - The answer is yes if 3 of these points lie on the same line.
- **We have to show the answer to instance S of 3Sum is yes if and only if the answer to $P = f(S)$ of collinearity is yes.**
 - Specifically, we need to show $a + b + c = 0$ iff points $A = (a, a^3), B = (b, b^3)$, and $C = (c, c^3)$ are collinear.
 - A, B, and C are collinear iff the line segments \overline{AB} and \overline{BC} have equal slopes.
 - we need to show $a + b + c = 0$ iff slope of $\overline{AB} = \text{slope of } \overline{BC}$.
Reducing 3Sum to Collinearity

- we use algebra to show $a + b + c = 0$ iff slope of $\overline{AB} = \text{slope of } \overline{BC}$.

\[
slope \overline{AB} = slope \overline{BC} \\
\iff \frac{a^3 - b^3}{a - b} = \frac{b^3 - c^3}{b - c} \\
\iff \frac{(a - b)(a^2 + ab + b^2)}{a - b} = \frac{(b - c)(b^2 + bc + c^2)}{b - c} \\
\iff a^2 + ab + b^2 = b^2 + bc + c^2 \\
\iff a^2 + ab = bc + c^2 \\
\iff a^2 + ab - bc - c^2 = 0 \\
\iff (a - c)(a + b + c) = 0 \\
\iff a + b + c = 0
\]

- $A = (a, a^3), B = (b, b^3)$, and $C = (c, c^3)$ are collinear if and only if $a + b + c = 0$.
 - The answer to collinearity is yes if and only if the answer to 3Sum is yes.
Reducing 3Sum to Collinearity

- Given any instance \(S = \{s_1, s_2, \ldots, s_n\} \) for \(E = 3\text{Sum} \) we created an instance \(f(S) = \{(s_1, s_1^3), (s_2, s_2^3), \ldots, (s_n, s_n^3)\} \) of \(H = \text{Collinearity} \) problem.
 - We don’t need the other direction, i.e., we don’t need to create an instance of 3Sum from collinearity.
- We showed that the answer for instance \(S \) of 3Sum is yes if and only if the answer for instance \(f(S) \) of collinearity is yes.
 - We need to show both directions.
- We conclude that 3Sum can be reduced to Collinearity.
 - In a sense, 3Sum is easier than collinearity.
- Always have an eye on how long the reduction takes.
 - Here, creating instance \(f(S) \) from \(S \) takes \(g(n) = O(n) \) time.
Assume reduction requires $O(g(n))$ time (here $g(n) = O(n)$) and solving problem E (3Sum) requires $\Omega(h(n))$ time (e.g., $\Omega(n^{1.99})$).

- If $g(n) \in o(h(n))$ (which is the case here), then solving problem H (collinearity) also requires $\Omega(h(n))$ (e.g., $\Omega(n^{1.99})$) time.
- Proof: consider otherwise, i.e., solving H requires $o(h(n))$. Then, given any instance of E, we can transform it to an instance of H (in $g(n) \in o(h(n))$ time) and answer it (by a yes or no) in $o(h(n))$. This contradicts the lower bound $\Omega(h(n))$ for E.

If Problem E (3Sum) is hard (i.e., requires $\Omega(n^{1.99})$), then so is Problem H (Collinearity). A reduction allows a lower bound for Problem E to be applied to Problem H.

In other words, any lower bound of $h(n)$ for 3Sum applies for collinearity as long as $h(n) \in \omega(n)$.
Assume reduction requires $O(g(n))$ (here $O(n)$) time and there is an algorithm that solves any instance of problem H (collinearity) in $O(j(n))$ (e.g., $\Theta(n^2)$) time.

- If $g(n) \in o(j(n))$ (which is the case here), then problem E can also be solved in $O(j(n))$ time.
- Proof: consider otherwise, i.e., assume answering some instances of E requires $\omega(j(n))$. We can transform any of these instances to instances of problem H in $O(j(n))$. Hence, answering the resulting instances of problem H also require $\omega(j(n))$, contradicting that any instance of H can be done in $O(j(n))$.

If Problem H (collinearity) is easy (can be solved in $\Theta(n^2)$), then so is Problem E (3Sum). A reduction allows an upper bound (algorithm) for Problem H (collinearity) to be applied to solve Problem E.

- In other words, an algorithm that solves collinearity in $j(n)$ can be used to solve 3Sum in $j(n)$ assuming $j(n) \in \omega(n)$.
Recall that any lower bound of $h(n)$ for 3Sum applies for collinearity as long as $h(n) \in \omega(n)$.

- 3Sum-conjecture: 3-Sum requires $\Omega(n^2)$ time, any algorithm for 3Sum runs in $\Omega(n^2)$.
- This conjecture was open for a long time, until it was refuted in 2014 by an algorithm which runs in $O(n^2/(\log n \log \log n)^{2/3})$. [Gronlund and Pettie paper on “Threesomes, Degenerates, and Love Triangles”]
- Modern 3Sum-conjecture: 3-Sum requires $\Omega(n^{2-\epsilon})$ time for any constant $\epsilon > 0$.
 - If this conjecture is true, collinearity also requires $\Omega(n^{2-\epsilon})$.
In fact, there are many other problems that 3Sum reduces to.

Informally, **3Sum-hard** class of problems are those that 3Sum reduces to. It include collinearity, 3Sum itself, and many geometric problems.

E.g., Given a set S of n points on the plane, what is the area of the smallest triangle formed by any three of these points?

E.g., Given a set S of n triangles and a triangle t, does the union of the triangles in S cover t?

Most 3Sum-hard problems can be solved in $O(n^2)$. An improvement to $O(n^{2-\epsilon})$ depend on the modern 3Sum-conjecture.

If modern 3Sum-Conjecture is correct, 3Sum and hence all 3Sum-hard problem required $\Omega(n^{2-\epsilon})$.