COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lower Bounds
CLRS 8.1
University of Manitoba
Assume you design an algorithm that solves a given problem \(P \) in \(\Theta(n^2) \).

Further exploration fails to discover an asymptotically faster algorithm.

How can you know whether it is possible to devise a \(o(n^2) \) algorithm for \(P \)?
Lower Bounds Introductions

• Assume you design an algorithm that solves a given problem P in $\Theta(n^2)$.
 • Further exploration fails to discover an asymptotically faster algorithm.
• How can you know whether it is possible to devise a $o(n^2)$ algorithm for P?
 • Establish a lower bound $f(n)$ showing that every algorithm that solves problem P requires $\Omega(f(n))$ time in the worst-case.
 • If you can show a lower bound of $\Omega(n^2)$, then every algorithm for solving P requires $\Omega(n^2)$ in the worst-case, and your algorithm’s time is asymptotically optimal.
Assume you design an algorithm that solves a given problem P in $\Theta(n^2)$. Further exploration fails to discover an asymptotically faster algorithm. How can you know whether it is possible to devise a $o(n^2)$ algorithm for P? Establish a lower bound $f(n)$ showing that every algorithm that solves problem P requires $\Omega(f(n))$ time in the worst-case. If you can show a lower bound of $\Omega(n^2)$, then every algorithm for solving P requires $\Omega(n^2)$ in the worst-case, and your algorithm’s time is asymptotically optimal.

Lower bounds are used to establish limitation of algorithms!
A lower bound $f(n)$ for a problem P implies that every algorithm for P runs in time $\Omega(f(n))$ in the worst-case.

E.g., a lower bound of $n \log n$ for comparison-based sorting problem.
A lower bound $f(n)$ for a **problem** P implies that every algorithm for P runs in time $\Omega(f(n))$ in the worst-case.

E.g., a lower bound of $n \log n$ for comparison-based sorting problem.

A lower bound $g(n)$ for an **algorithm** A implies that there are inputs for which the running time of A is $\Omega(g(n))$, i.e., in the worst-case A runs in $\Omega(g(n))$.

E.g., a lower bound of n^2 for Bubble-sort (i.e., we show there are inputs for which Bubble-sort runs in $\Omega(n^2)$).
A lower bound \(f(n) \) for a **problem** \(P \) implies that **every** algorithm for \(P \) runs in time \(\Omega(f(n)) \) in the worst-case.

- E.g., a lower bound of \(n \log n \) for comparison-based sorting problem.

A lower bound \(g(n) \) for an **algorithm** \(A \) implies that there are inputs for which the running time of \(A \) is \(\Omega(g(n)) \), i.e., in the worst-case \(A \) runs in \(\Omega(g(n)) \).

- E.g., a lower bound of \(n^2 \) for Bubble-sort (i.e., we show there are inputs for which Bubble-sort runs in \(\Omega(n^2) \)).

Our focus in this section is on **lower bounds for problems**.
Comparison-based Sorting

- Problem: sort a set of items (e.g., potatoes) by only comparing them (i.e., using a scale to compare two items).
Comparison-based Sorting

- Problem: sort a set of items (e.g., potatos) by only comparing them (i.e., using a scale to compare two items).

- An array of n distinct items can be ordered in $n!$ ways.
 - This corresponds to the number of permutations of n items.
 - Sorting corresponds to identifying the permutation of a sequence of elements.
 - Once the permutation is known, the correct ordered position of each item can be restored.
A decision tree is a loopless flowchart representing all possible sequences of steps executed by an algorithm while solving a given problem.

- The **height** of the tree corresponds to the **worst-case time** required by the algorithm.
- Each **leaf** indicates one possible input (e.g., a permutation in case of sorting).

For sorting, each internal node is associated with a comparison

- For finding a lower bound for time complexity, we count the number of comparisons in the worst case, i.e., the height of any decision tree.
One possible decision tree for determining the correct sorted order of three items a, b, c.

- Tree has height 3 → the algorithm requires 3 comparisons in the worst case.
- Every binary tree with $3! = 6$ leaves (possible permutation) has height at least 3.
- Hence, every algorithm for sorting 3 elements requires at least 3 comparisons in the worst case.
An algorithm that sorts n items corresponds to a decision tree which has $n!$ leaves (each representing one permutation).

- The height of a binary tree on X leaves is at least $\log_2(X)$.
An algorithm that sorts n items corresponds to a decision tree which has $n!$ leaves (each representing one permutation).

The height of a binary tree on X leaves is at least $\log_2(X)$.

The height of a binary tree on $n!$ leaves is at least $\log_2(n!)$. (because a binary tree with height h has at most 2^h leaves.)
An algorithm that sorts n items corresponds to a decision tree which has $n!$ leaves (each representing one permutation).

The height of a binary tree on X leaves is at least $\log_2(X)$.

The height of a binary tree on $n!$ leaves is at least $\log_2(n!)$.

(because a binary tree with height h has at most 2^h leaves.)

$log(n!) = log(n \cdot (n-1) \cdot (n-2) \ldots n/2 \cdot (n/2-1) \ldots 2 \cdot 1) > log(n/2 \cdot n/2 \ldots n/2) = log(n/2)^{n/2} = n/2 \log(n/2) \in \Theta(n \log n)$

\[n/2 \text{ times} \]
Reductions

- Sometimes it is difficult to establish a lower bound directly
- We can use the lower bounds for a different problem using a **reduction**
 - Reduction creates a relationship between an easy problem \(E \) and a hard problem \(H \).
 - It has applications for deriving both lower and upper bounds.
Reductions

- Sometimes it is difficult to establish a lower bound directly
- We can use the lower bounds for a different problem using a reduction
 - Reduction creates a relationship between an easy problem E and a hard problem H.
 - It has applications for deriving both lower and upper bounds.

Steps for reduction (for a lower bound):

1) Assume a lower bound for problem E is known
2) Show that problem H is as hard as problem E
3) \rightarrow The lower bound for problem E also applies to problem H.
Reducions

- How to show that problem H is as hard as problem E?
 - Transform any instance of problem E to an instance of problem H.
 - Define a reduction f such that for any instance i of problem E, there is an instance $f(i)$ of problem H
 - x is a solution to i if and only if $f(x)$ is a solution to $f(i)$.
Assume reduction requires $O(g(n))$ time and solving problem E requires $\Omega(h(n))$ time.

If $g(n) \in o(h(n))$, then solving problem H also requires $\Omega(h(n))$ time.
Assume reduction requires $O(g(n))$ time and solving problem E requires $\Omega(h(n))$ time.

- If $g(n) \in o(h(n))$, then solving problem H also requires $\Omega(h(n))$ time.
- Proof: consider otherwise, i.e., solving H requires $o(h(n))$. Then, given any instance of E, we can transform it to an instance of H (in $g(n) \in o(h(n))$ time) and solve it in $o(h(n))$. This contradicts the lower bound $\Omega(h(n))$ for E.

If Problem E is hard, then so is Problem H. A reduction allows a lower bound for Problem E to be applied to Problem H.

Reduction and Lower Bounds
Assume reduction requires $O(g(n))$ time and solving problem E requires $\Omega(h(n))$ time.

- If $g(n) \in o(h(n))$, then solving problem H also requires $\Omega(h(n))$ time.
- Proof: consider otherwise, i.e., solving H requires $o(h(n))$. Then, given any instance of E, we can transform it to an instance of H (in $g(n) \in o(h(n))$ time) and solve it in $o(h(n))$. This contradicts the lower bound $\Omega(h(n))$ for E.

If Problem E is hard, then so is Problem H. A reduction allows a lower bound for Problem E to be applied to Problem H.
Assume reduction requires $O(g(n))$ time and there is an algorithm that solves problem H in $O(j(n))$ time.

If $g(n) \in o(j(n))$, then problem E can also be solved in $O(j(n))$ time.
Assume reduction requires $O(g(n))$ time and there is an algorithm that solves problem H in $O(j(n))$ time.

- If $g(n) \in o(j(n))$, then problem E can also be solved in $O(j(n))$ time.
- Proof: consider otherwise, i.e., assume solving some instances of E requires $\omega(j(n))$. We can transform any of these instances to instances of problem H in $O(j(n))$. Hence, solving the resulting instances of problem H require $\omega(j(n))$, contradicting that any instance of H can be done in $O(j(n))$.

If Problem H is easy, then so is Problem E. A reduction allows an upper bound (algorithm) for Problem H to be applied to solve Problem E.

Reductions and Upper Bounds
Assume reduction requires $O(g(n))$ time and there is an algorithm that solves problem H in $O(j(n))$ time.

- If $g(n) \in o(j(n))$, then problem E can also be solved in $O(j(n))$ time.
- Proof: consider otherwise, i.e., assume solving some instances of E requires $\omega(j(n))$. We can transform any of these instances to instances of problem H in $O(j(n))$. Hence, solving the resulting instances of problem H require $\omega(j(n))$, contradicting that any instance of H can be done in $O(j(n))$.

If Problem H is easy, then so is Problem E. A reduction allows an upper bound (algorithm) for Problem H to be applied to solve Problem E.
Reduction Summary, Applications

- Reduce any instance i of an easy problem E to an instance $f(i)$ of a hard problem H so that x is a solution for i iff $f(x)$ is a solution for $f(i)$.

Negative Results (lower bounds): If Problem E is hard, then so is Problem H. A reduction allows a lower bound for Problem E to be applied to Problem H.

Algorithm Design: If Problem H is easy, then so is Problem E. A reduction allows an algorithm for Problem H to solve Problem E.

Complexity Classes: Group problems into equivalence classes by algorithmic difficulty (complexity zoo).
Problem E: 3SUM

- **Instance:** a set S of n distinct real numbers
- **Question:** Is there a subset $\{a, b, c\} \subset S$ such that $a + b + c = 0$?
3Sum and Collinearity

- **Problem E: 3SUM**
 - Instance: a set S of n distinct real numbers
 - Question: Is there a subset $\{a, b, c\} \subset S$ such that $a + b + c = 0$?

- **Problem H: Collinearity**
 - Instance: a set P of n distinct points in the plane
 - Question: Are any three of these points collinear?
Decision Problems

- 3Sum and Collinearity are instances of **decision problems** which ask questions whose answers are either ‘yes’ or ‘no’.
- Many algorithmic problem can be formulated as decision problems to derive lower bounds on their complexity.
 - E.g., solving the problem “find a set \(\{a, b, c\} \subset S \) so that \(a + b + c = 0 \)” is at least as difficult as answering the question “Does there exist a subset \(\{a, b, c\} \subset S \) so that \(a + b + c = 0 \)”
3Sum and Collinearity are instances of decision problems which ask questions whose answers are either ‘yes’ or ‘no’.

Many algorithmic problem can be formulated as decision problems to derive lower bounds on their complexity.

- E.g., solving the problem “find a set \{a, b, c\} \subset S so that \(a + b + c = 0\)” is at least as difficult as answering the question “Does there exist a subset \{a, b, c\} \subset S so that \(a + b + c = 0\)?”
- A lower bound on the decision problem applies to the original problem.
3Sum and Collinearity are instances of decision problems which ask questions whose answers are either ‘yes’ or ‘no’.

Many algorithmic problem can be formulated as decision problems to derive lower bounds on their complexity.

E.g., solving the problem “find a set \(\{a, b, c\} \subseteq S \) so that \(a + b + c = 0\)” is at least as difficult as answering the question “Does there exist a subset \(\{a, b, c\} \subseteq S \) so that \(a + b + c = 0\)”

A lower bound on the decision problem applies to the original problem.

When establishing lower bounds, we often consider decision versions of problems:

- Original Problem: find the median of \(A[0 : n - 1] \)
- Decision Variant: Is the median of \(A[0 : n - 1] \) equal to \(x \)?
- Both have lower bound of \(\Omega(n) \).
Reducing from 3Sum to Collinearity

- Choose any instance $S = \{s_1, s_2, \ldots, s_n\}$ for 3Sum.
 - The answer is yes if 3 of these numbers sum to 0.
Reducing from 3Sum to Collinearity

- Choose any instance \(S = \{s_1, s_2, \ldots, s_n\} \) for 3Sum.
 - The answer is yes if 3 of these numbers sum to 0.
- Create an instance \(P = \{(s_1, s_1^3), (s_2, s_2^3), \ldots, (s_n, s_n^3)\} \) of the Collinearity problem (i.e., \(P = f(S) \)).
 - The answer is yes if 3 of these points lie on the same line.
Reducing from 3Sum to Collinearity

Choose any instance $S = \{s_1, s_2, \ldots, s_n\}$ for 3Sum.
- The answer is yes if 3 of these numbers sum to 0.

Create an instance $P = \{(s_1, s_1^3), (s_2, s_2^3), \ldots, (s_n, s_n^3)\}$ of the Collinearity problem (i.e., $P = f(S)$).
- The answer is yes if 3 of these points lie on the same line.

We have to show the answer to instance S of 3Sum is yes if and only if the answer to $P = f(S)$ of collinearity is yes.
Reducing from 3Sum to Collinearity

- Choose any instance $S = \{s_1, s_2, \ldots, s_n\}$ for 3Sum.
 - The answer is yes if 3 of these numbers sum to 0.

- Create an instance $P = \{(s_1, s_1^3), (s_2, s_2^3), \ldots, (s_n, s_n^3)\}$ of the Collinearity problem (i.e., $P = f(S)$).
 - The answer is yes if 3 of these points lie on the same line.

We have to show the answer to instance S of 3Sum is yes if and only if the answer to $P = f(S)$ of collinearity is yes.

- Specifically, we need to show $a + b + c = 0$ iff points $A = (a, a^3), B = (b, b^3)$, and $C = (c, c^3)$ are collinear.
 - $A, B, \text{ and } C$ are collinear iff the line segments \overline{AB} and \overline{BC} have equal slopes.
 - we need to show $a + b + c = 0$ iff slope of $\overline{AB} =$ slope of \overline{BC}.
Reducing 3Sum to Collinearity

- we use algebra to show $a + b + c = 0$ iff slope of $\overline{AB} = \text{slope of } \overline{BC}$.

\[
\begin{align*}
\text{slope } \overline{AB} &= \text{slope } \overline{BC} \\
\frac{a^3 - b^3}{a - b} &= \frac{b^3 - c^3}{b - c} \\
\frac{(a - b)(a^2 + ab + b^2)}{a - b} &= \frac{(b - c)(b^2 + bc + c^2)}{b - c} \\
a^2 + ab + b^2 &= b^2 + bc + c^2 \\
a^2 + ab &= bc + c^2 \\
a^2 + ab - bc - c^2 &= 0 \\
(a - c)(a + b + c) &= 0 \\
a + b + c &= 0
\end{align*}
\]

- $A = (a, a^3), B = (b, b^3), \text{ and } C = (c, c^3)$ are collinear if and only if $a + b + c = 0$.

 - The answer to collinearity is yes if and only if the answer to 3Sum is yes.
Reducing 3Sum to Collinearity

- Given any instance $S = \{s_1, s_2, \ldots, s_n\}$ for $E = 3\text{Sum}$ we created an instance $f(S) = \{(s_1^3, s_2^3), (s_2^3, s_3^3), \ldots, (s_n^3, s_n^3)\}$ of $H = \text{Collinearity}$ problem.

- We don't need the other direction, i.e., we don't need to create an instance of 3Sum from collinearity.
Reducing 3Sum to Collinearity

- Given any instance $S = \{s_1, s_2, \ldots, s_n\}$ for $E = \text{3Sum}$ we created an instance $f(S) = \{(s_1, s_1^3), (s_2, s_2^3), \ldots, (s_n, s_n^3)\}$ of $H = \text{Collinearity}$ problem.

 - We don't need the other direction, i.e., we don't need to create an instance of 3Sum from collinearity.

- We showed that the answer for instance S of 3Sum is yes if and only if the answer for instance $f(S)$ of collinearity is yes.

 - We need to show both directions.
Reducing 3Sum to Collinearity

- Given any instance \(S = \{s_1, s_2, \ldots, s_n\} \) for \(E = 3\text{Sum} \) we created an instance \(f(S) = \{(s_1, s_1^3), (s_2, s_2^3), \ldots, (s_n, s_n^3)\} \) of \(H = \text{Collinearity} \) problem.
 - We don’t need the other direction, i.e., we don’t need to create an instance of 3Sum from collinearity.

- We showed that the answer for instance \(S \) of 3Sum is yes if and only if the answer for instance \(f(S) \) of collinearity is yes.
 - We need to show both directions.

- We conclude that 3Sum can be reduced to Collinearity.
 - In a sense, 3Sum is easier than collinearity.
Reducing 3Sum to Collinearity

- Given any instance $S = \{s_1, s_2, \ldots, s_n\}$ for $E = 3$Sum we created an instance $f(S) = \{(s_1, s_1^3), (s_2, s_2^3), \ldots, (s_n, s_n^3)\}$ of $H = \text{Collinearity}$ problem.
 - We don’t need the other direction, i.e., we don’t need to create an instance of 3Sum from collinearity.

- We showed that the answer for instance S of 3Sum is yes if and only if the answer for instance $f(S)$ of collinearity is yes.
 - We need to show both directions.

- We conclude that 3Sum can be reduced to Collinearity.
 - In a sense, 3Sum is easier than collinearity.

- Always have an eye on how long the reduction takes.
 - Here, creating instance $f(S)$ from S takes $g(n) = O(n)$ time.
Assume reduction requires $O(g(n))$ time (here $g(n) = O(n)$) and solving problem E (3Sum) requires $\Omega(h(n))$ time (e.g., $\Omega(n^{1.99})$).

If $g(n) \in o(h(n))$ (which is the case here), then solving problem H (collinearity) also requires $\Omega(h(n))$ (e.g., $\Omega(n^{1.99})$) time.
Assume reduction requires $O(g(n))$ time (here $g(n) = O(n)$) and solving problem E (3Sum) requires $\Omega(h(n))$ time (e.g., $\Omega(n^{1.99})$).

- If $g(n) \in o(h(n))$ (which is the case here), then solving problem H (collinearity) also requires $\Omega(h(n))$ (e.g., $\Omega(n^{1.99})$) time.

Proof: consider otherwise, i.e., solving H requires $o(h(n))$. Then, given any instance of E, we can transform it to an instance of H (in $g(n) \in o(h(n))$ time) and answer it (by a yes or no) in $o(h(n))$. This contradicts the lower bound $\Omega(h(n))$ for E.
Assume reduction requires $O(g(n))$ time (here $g(n) = O(n)$) and solving problem E (3Sum) requires $\Omega(h(n))$ time (e.g., $\Omega(n^{1.99})$).

If $g(n) \in o(h(n))$ (which is the case here), then solving problem H (collinearity) also requires $\Omega(h(n))$ (e.g., $\Omega(n^{1.99})$) time.

Proof: consider otherwise, i.e., solving H requires $o(h(n))$. Then, given any instance of E, we can transform it to an instance of H (in $g(n) \in o(h(n))$ time) and answer it (by a yes or no) in $o(h(n))$. This contradicts the lower bound $\Omega(h(n))$ for E.

If Problem E (3Sum) is hard (i.e., requires $\Omega(n^{1.99})$), then so is Problem H (Collinearity). A reduction allows a lower bound for Problem E to be applied to Problem H.

In other words, any lower bound of $h(n)$ for 3Sum applies for collinearity as long as $h(n) \in \omega(n)$.
Reduction & upper bounds

- Assume reduction requires $O(g(n))$ (here $O(n)$) time and there is an algorithm that solves any instance of problem H (collinearity) in $O(j(n))$ (e.g., $\Theta(n^2)$) time.

- If $g(n) \in o(j(n))$ (which is the case here), then problem E can also be solved in $O(j(n))$ time.
Reduction & upper bounds

• Assume reduction requires $O(g(n))$ (here $O(n)$) time and there is an algorithm that solves any instance of problem H (collinearity) in $O(j(n))$ (e.g., $\Theta(n^2)$) time.

• If $g(n) \in o(j(n))$ (which is the case here), then problem E can also be solved in $O(j(n))$ time.

• Proof: consider otherwise, i.e., assume answering some instances of E requires $\omega(j(n))$. We can transform any of these instances to instances of problem H in $O(j(n))$. Hence, answering the resulting instances of problem H also require $\omega(j(n))$, contradicting that any instance of H can be done in $O(j(n))$.

If Problem H(collinearity) is easy (can be solved in $\Theta(n^2)$), then so is Problem E(3Sum). A reduction allows an upper bound (algorithm) for Problem H(collinearity) to be applied to solve Problem E.
Assume reduction requires $O(g(n))$ (here $O(n)$) time and there is an algorithm that solves any instance of problem H (collinearity) in $O(j(n))$ (e.g., $\Theta(n^2)$) time.

- If $g(n) \in o(j(n))$ (which is the case here), then problem E can also be solved in $O(j(n))$ time.
- Proof: consider otherwise, i.e., assume answering some instances of E requires $\omega(j(n))$. We can transform any of these instances to instances of problem H in $O(j(n))$. Hence, answering the resulting instances of problem H also require $\omega(j(n))$, contradicting that any instance of H can be done in $O(j(n))$.

If Problem H (collinearity) is easy (can be solved in $\Theta(n^2)$), then so is Problem E (3Sum). A reduction allows an upper bound (algorithm) for Problem H (collinearity) to be applied to solve Problem E.

- In other words, an algorithm that solves collinearity in $j(n)$ can be used to solve 3Sum in $j(n)$ assuming $j(n) \in \omega(n)$.
Recall that any lower bound of $h(n)$ for 3Sum applies for collinearity as long as $h(n) \in \omega(n)$.

- 3Sum-conjecture: 3-Sum requires $\Omega(n^2)$ time, any algorithm for 3Sum runs in $\Omega(n^2)$.
- Modern 3Sum-conjecture: 3-Sum requires $\Omega(n^2 - \epsilon)$ time for any constant $\epsilon > 0$. If this conjecture is true, collinearity also requires $\Omega(n^2 - \epsilon)$.
Recall that any lower bound of $h(n)$ for 3Sum applies for collinearity as long as $h(n) \in \omega(n)$.

3Sum-conjecture: 3-Sum requires $\Omega(n^2)$ time, any algorithm for 3Sum runs in $\Omega(n^2)$.

This conjecture was open for a long time, until it was refuted in 2014 by an algorithm which runs in $O(n^2 / (\log n \log \log n)^{2/3})$.

[Grønlund and Pettie paper on “Threesomes, Degenerates, and Love Triangles”]
Recall that any lower bound of $h(n)$ for 3Sum applies for collinearity as long as $h(n) \in \omega(n)$.

- **3Sum-conjecture**: 3-Sum requires $\Omega(n^2)$ time, any algorithm for 3Sum runs in $\Omega(n^2)$.
- This conjecture was open for a long time, until it was refuted in 2014 by an algorithm which runs in $O(n^2 / (\log n \log \log n)^{2/3})$.
 [Gronlund and Pettie paper on “Threesomes, Degenerates, and Love Triangles”]
- **Modern 3Sum-conjecture**: 3-Sum requires $\Omega(n^{2-\epsilon})$ time for any constant $\epsilon > 0$.
Recall that any lower bound of $h(n)$ for 3Sum applies for collinearity as long as $h(n) \in \omega(n)$.

- 3Sum-conjecture: 3-Sum requires $\Omega(n^2)$ time, any algorithm for 3Sum runs in $\Omega(n^2)$.
 - This conjecture was open for a long time, until it was refuted in 2014 by an algorithm which runs in $O(n^2/(\log n \log \log n)^{2/3})$.
 [Gronlund and Pettie paper on “Threesomes, Degenerates, and Love Triangles”]
 - Modern 3Sum-conjecture: 3-Sum requires $\Omega(n^{2-\epsilon})$ time for any constant $\epsilon > 0$.
 - If this conjecture is true, collinearity also requires $\Omega(n^{2-\epsilon})$.

In fact, there are many other problems that 3Sum reduces to.

Informally, 3Sum-hard class of problems are those that 3Sum reduces to. It include collinearity, 3Sum itself, and many geometric problems.
In fact, there are many other problems that 3Sum reduces to

- Informally, **3Sum-hard** class of problems are those that 3Sum reduces to. It includes collinearity, 3Sum itself, and many geometric problems.
- E.g., Given a set \(S \) of \(n \) points on the plane, what is the area of the smallest triangle formed by any three of these points?
- E.g., Given a set \(S \) of \(n \) triangles and a triangle \(t \), does the union of the triangles in \(S \) cover \(t \)?
In fact, there are many other problems that 3Sum reduces to.

Informally, 3Sum-hard class of problems are those that 3Sum reduces to. It include collinearity, 3Sum itself, and many geometric problems.

E.g., Given a set S of n points on the plane, what is the area of the smallest triangle formed by any three of these points?

E.g., Given a set S of n triangles and a triangle t, does the union of the triangles in S cover t?

Most 3Sum-hard problems can be solved in $O(n^2)$. An improvement to $O(n^{2-\epsilon})$ depend on the modern 3Sum-conjecture.

If modern 3Sum-Conjecture is correct, 3Sum and hence all 3Sum-hard problem required $\Omega(n^{2-\epsilon})$.