COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 6 - Jan. 18, 2019
CLRS 7.1, 7-4, 9.1, 9.3
University of Manitoba
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)

- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.

- The best-case running time is?
 - It is $\Theta(n \log n)$, when there are a linear number (e.g., roughly half) of items on each side of pivots.

- The average-case running time is?
 - When the input is shuffled, the running time is $O(n \log n)$.
Comparison-based algorithms

- A sorting algorithm is **comparison-based** if it can sort any array of **objects** by just pairwise comparison of them.
 - E.g., you want to sort a bag of potatoes using a balance scale.
- It is known that any comparison-based sorting algorithm runs in $\Omega(n \log n)$ in the worst-case.
- Can we improve the worst-case running time $\Theta(n^2)$ of Quick-sort to $\Theta(n \log n)$?
 - This relates to the **selection problem**.
Selection & order statistics

- The i’th order statistic of a set of comparable elements is the i’th smallest value in the set.
 - The $\lceil n/2 \rceil$’th order statistic among n items is called median.
 - The $\lceil n/4 \rceil$’th order statistic among n items is called quartile.
- How can we find the 0’th or $(n - 1)$’th order statistic in $\Theta(n)$.
 - Finding min/max \rightarrow a linear scan is sufficient!
- **Selection problem:** find the i’th order statistics:
 - The input is a set of n comparable objects (e.g., integers) and an integer i
 - The output is the element at index i of the sorted array ($i + 1$’th smallest item)
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- Attempt II: apply \texttt{heapify} on A and \texttt{extract-min} $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n/\log n)$.

- What is the minimum time required for selection?
 - We need to read the whole input, i.e., the running time of any algorithm is $\Omega(n)$.
 - Can we select in $\Theta(n)$?
Selection algorithms

- Quick-select: similar to Quick-sort, but for selection
- Select a pivot, partition around it, and recurs on the one side that contains the i'th element
QuickSelect

quick-select1(A, i)
A: array of size n, i: integer s.t. 0 ≤ i < n
1. p ← choose-pivot1(A)
2. j ← partition(A, p)
3. if j = i then
4. return A[j]
5. else if j > i then
6. return quick-select1(A[0, 1, . . . , j − 1], i)
7. else if j < i then
8. return quick-select1(A[j + 1, j + 2, . . . , n − 1], i − j − 1)

- If pivot is at position j, the cost of recursive call parameters will be:
 - None if j = i.
 - (j, i) if j > i (recursing on the left subarray).
 - (n − j − 1, i − j − 1) if j < i (recursing on the right subarray).
Average-case analysis of quick-select

Assume all \(n! \) permutations are equally likely.

Define \(T(n, i) \) as average cost for selecting \(i \)th item from size-\(n \) array:

The cost for recursive calls (RC) is

\[
RC = \begin{cases}
0 & j = i \\
T(j, i), & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}
\]

Shuffled input → it is equally likely for the pivot to be at any position:

\[
T(n, i) = cn + \frac{1}{n} \left((\text{RC if } j=0) + (\text{RC if } j=1) + \ldots + (\text{RC if } j=n-1) \right)
\]

\[
= cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1, i - j - 1) + \sum_{j=i+1}^{n-1} T(j, i) \right)
\]

For simplicity, define \(T(n) = \max_{0 \leq k < n} T(n, k) \).
Average-case analysis of quick-select

\[T(n) \leq cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right) \]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.
- The recursive cost for a good pivot is at most \(T(3n/4) \).
- The recursive cost for a bad pivot is at most \(T(n) \).

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]
The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T\left(\lfloor 3n/4 \rfloor \right) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]

Rearranging gives:

\[
T(n) \leq 2cn + T\left(\lfloor 3n/4 \rfloor \right) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d
\]

\[
\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)
\]

Since \(T(n) \) must be \(\Omega(n) \) (why?), \(T(n) \in \Theta(n) \).
Linear-time selection

- Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.
 - Recurrence given by $T(n) = \begin{cases}
 T(n-1) + cn, & n \geq 2 \\
 d, & n = 1
\end{cases}$

- Is there any selection algorithm that runs in $O(n)$ in the worst-case?
 - The answer is Yes; **Median of medians** algorithms!
 - It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
 - x will be the pivot for quick-select
- Partition the whole array using x as the pivot
- Recurs on the corresponding subarray as in Quick-select
Median of five example

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>2</th>
<th>4</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.n/10</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>21</td>
<td>18</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>54</td>
<td>32</td>
<td>19</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>87</td>
<td>44</td>
<td>26</td>
<td>71</td>
</tr>
</tbody>
</table>

Find X, the median of medians
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $< x$.
 - This implies half of blocks include at least 3 elements $< x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x.

- Similarly, there will be at least $3n/10$ elements larger than x.

- We assume distinct items; when pivot is equal to multiple items, you can update the partition algorithm so that the pivot is the ‘best’ among items with the same key.

- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot.

- In the worst case, the size of recursive call is always $7n/10$.

$$T(n) \leq \begin{cases}
T(n/5) + \underbrace{\text{find } x}_{d,} + \underbrace{cn}_{\text{partition around } x} + T(7n/10), & n \geq 2 \\
T(1), & n = 1
\end{cases}$$
Median of five algorithm

\[T(n) \leq \begin{cases}
 T(n/5) + \underbrace{cn}_{\text{partition around}} + \underbrace{T(7n/10)}_{\text{recursive call}}, & n \geq 2 \\
 \underbrace{d}_{\text{find x}}, & n = 1
\end{cases} \]

- We **guess** that \(T(n) \in O(n) \) and use **strong** induction to prove it.
- We prove there is a value \(M \) s.t. \(T(n) \leq Mn \) for all \(n \geq 1 \).
- For the base we have \(T(1) = d \leq M \) as long as \(M \geq d \).
- For any value of \(n \) we can state:

\[
T(n) \leq T(n/5) + T(7n/10) + cn \quad \text{(definition)} \\
\leq M \cdot n/5 + M \cdot 7n/10 + cn \quad \text{(induction hypothesis)} \\
= (9M/10 + c)n \\
\leq M \cdot n \quad \text{as long as } M \geq 9M/10 + c, \text{i.e., } M \geq 10c
\]

so, we showed for \(M = \max\{10c, d\} \) we have \(T(n) \leq M \cdot n \) for \(n \geq 1 \). So, \(T(n) \in O(n) \).
Quick-sort revisit

Theorem

It is possible to select the i’th smallest item in a list of n numbers in time $\Theta(n)$

- Quick-sort in $O(n \log n)$ time:
 - Using select algorithm to choose the pivot as the median of n items in $O(n)$ time
 - Partition around pivot in $O(n)$ time (selecting pivot as n/c’th smallest item for constant c gives the same result)
 - Sort the two sides of pivot recursively in time $2T(n/2)$.

- The cost will be $T(n) = 2T(n/2) + \Theta(n)$, which gives $T(n) = \Theta(n \log n)$ [case II of Master theorem]

Theorem

A smart selection of pivot, using linear-time select, results in quick-sort running in $\Theta(n \log n)$