COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 6 - Jan. 18, 2019
CLRS 7.1, 7-4, 9.1, 9.3
University of Manitoba
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)
- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.
- The best-case running time is?
 - It is $\Theta(n \log n)$, when there are a linear number (e.g., roughly half) of items on each side of pivots.
- The average-case running time is?
 - When the input is shuffled, the running time is $O(n \log n)$.
Comparison-based algorithms

- A sorting algorithm is **comparison-based** if it can sort any array of **objects** by just pairwise comparison of them.
 - E.g., you want to sort a bag of potatoes using a balance scale.

- It is known that any comparison-based sorting algorithm runs in $\Omega(n \log n)$ in the worst-case.

- Can we improve the worst-case running time $\Theta(n^2)$ of Quick-sort to $\Theta(n \log n)$?
 - This relates to the **selection problem**.
Selection & order statistics

- The \(i \)'th order statistic of a set of comparable elements is the \(i \)'th smallest value in the set.
 - The \(\lceil n/2 \rceil \)'th order statistic among \(n \) items is called median.
 - The \(\lceil n/4 \rceil \)'th order statistic among \(n \) items is called quartile.
- How can we find the 0'th or \((n - 1)'\)th order statistic in \(\Theta(n) \).
 - Finding min/max \(\rightarrow \) a linear scan is sufficient!
- **Selection problem:** find the \(i \)'th order statistics:
 - The input is a set of \(n \) comparable objects (e.g., integers) and an integer \(i \)
 - The output is the element at index \(i \) of the sorted array (\(i + 1 \)'th smallest item)
Selection algorithms

- **Attempt I:** sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- **Attempt II:** apply **heapify** on A and **extract-min** $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n / \log n)$.

- What is the minimum time required for selection?
 - We need to read the whole input, i.e., the running time of any algorithm is $\Omega(n)$.
 - Can we select in $\Theta(n)$?
Selection algorithms

- Quick-select: similar to Quick-sort, but for selection
- Select a pivot, partition around it, and recurs on the one side that contains the i’th element
QuickSelect Review

\[quick-select1(A, i) \]

\[A: \text{array of size } n, \quad \text{ } i: \text{integer s.t. } 0 \leq i < n \]

1. \[p \leftarrow \text{choose-pivot1}(A) \]
2. \[j \leftarrow \text{partition}(A, p) \]
3. \[\text{if } j = i \text{ then} \]
4. \[\quad \text{return } A[j] \]
5. \[\text{else if } j > i \text{ then} \]
6. \[\quad \text{return } quick-select1(A[0, 1, \ldots, j - 1], i) \]
7. \[\text{else if } j < i \text{ then} \]
8. \[\quad \text{return } quick-select1(A[j + 1, j + 2, \ldots, n - 1], i - j - 1) \]

- If pivot is at position \(j \), the cost of recursive call parameters will be:
 - None if \(j = i \).
 - \((j, i)\) if \(j > i \) (recursing on the left subarray).
 - \((n - j - 1, i - j - 1)\) if \(j < i \) (recursing on the right subarray).
Average-case analysis of quick-select

Assume all \(n! \) permutations are equally likely.

Define \(T(n, i) \) as average cost for selecting \(i \)th item from size-\(n \) array:

The cost for recursive calls (RC) is

\[
RC = \begin{cases}
0 & j = i \\
T(j, i) & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}
\]

Shuffled input \(\rightarrow \) it is equally likely for the pivot to be at any position:

\[
T(n, i) = cn + \frac{1}{n} \left((RC \text{ if } j=0) + (RC \text{ if } j=1) + \ldots + (RC \text{ if } j=n-1) \right)
\]

\[
= cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1, i - j - 1) + \sum_{j=i+1}^{n-1} T(j, i) \right)
\]

For simplicity, define \(T(n) = \max_{0 \leq k < n} T(n, k) \).
Average-case analysis of quick-select

\[T(n) \leq cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right) \]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.
- The recursive cost for a good pivot is at most \(T(3n/4) \).
- The recursive cost for a bad pivot is at most \(T(n) \).

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) \substack{\text{bad pivot} \cr \text{good pivot}} + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d & n = 1
\end{cases}
\]
Average-case analysis of quick-select

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]

Rearranging gives:

\[
T(n) \leq 2cn + T(\lfloor 3n/4 \rfloor) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d
\]

\[
\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)
\]

Since \(T(n) \) must be \(\Omega(n) \) (why?), \(T(n) \in \Theta(n) \).
Linear-time selection

- Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.
- Is there any selection algorithm that runs in $O(n)$ in the worst-case?
 - The answer is Yes; **Median of medians** algorithms!
 - It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
 - x will be the pivot for quick-select
- Partition the whole array using x as the pivot
- Recurs on the corresponding subarray as in Quick-select
Median of five example

Find X, the median of medians
Median of five algorithm

- Pivot \(x \) is median of medians \(\rightarrow \) half of blocks have median \(< x \).
 - This implies half of blocks include at least 3 elements \(< x \).
 - So, there will be at least \(n/5 \cdot 1/2 \cdot 3 = 3n/10 \) elements smaller than \(x \).
- Similarly, there will be at least \(3n/10 \) elements larger than \(x \).
- We assume distinct items; when pivot is equal to multiple items, you can update the partition algorithm so that the pivot is the ‘best’ among items with the same key.
- Hence, the size of recursive call is always in the range \((3n/10, 7n/10) \).
 - \(x \) is always a ‘good’ pivot.
- In the worst case, the size of recursive call is always \(7n/10 \).

\[
T(n) \leq \begin{cases}
T(n/5) + \overbrace{\text{find } x}^{d} + \overbrace{cn}^{\text{partition around } x} + T(7n/10), & n \geq 2 \\
T(1) & n = 1
\end{cases}
\]
Median of five algorithm

\[T(n) \leq \begin{cases}
T(n/5) & \text{find } x \\
T(n/5) + \frac{cn}{d} & \text{partition around } x \\
T(7n/10) & \text{recursive call}
\end{cases}, \quad n \geq 2 \\
\]

We guess that \(T(n) \in O(n) \) and use strong induction to prove it.

We prove there is a value \(M \) s.t. \(T(n) \leq Mn \) for all \(n \geq 1 \).

For the base we have \(T(1) = d \leq M \) as long as \(M \geq d \).

For any value of \(n \) we can state:

\[
T(n) \leq T(n/5) + T(7n/10) + cn \quad \text{(definition)} \\
\leq M \cdot n/5 + M \cdot 7n/10 + cn \quad \text{(induction hypothesis)} \\
= (9M/10 + c)n \\
\leq M \cdot n \quad \text{as long as } M \geq 9M/10 + c, \text{i.e., } M \geq 10c
\]

so, we showed for \(M = \max\{10c, d\} \) we have \(T(n) \leq M \cdot n \) for \(n \geq 1 \). So, \(T(n) \in O(n) \).
Quick-sort revisit

Theorem

It is possible to select the i’th smallest item in a list of n numbers in time \(\Theta(n) \)

- Quick-sort in \(O(n \log n) \) time:
 - Using select algorithm to choose the pivot as the **median** of \(n \) items in \(O(n) \) time
 - Partition around pivot in \(O(n) \) time (selecting pivot as \(n/c' \)th smallest item for constant \(c \) gives the same result)
 - Sort the two sides of pivot recursively in time \(2T(n/2) \).

- The cost will be \(T(n) = 2T(n/2) + \Theta(n) \), which gives \(T(n) = \Theta(n \log n) \) [case II of Master theorem]

Theorem

A smart selection of pivot, using linear-time select, results in quick-sort running in \(\Theta(n \log n) \)
QuickSelect Algorithm

\textit{quick-select1}(A, i)
\begin{itemize}
 \item A: array of size \(n \), \(i \): integer s.t. \(0 \leq i < n \)
 \item 1. \(p \leftarrow \text{choose-pivot1}(A) \)
 \item 2. \(j \leftarrow \text{partition}(A, p) \)
 \item 3. if \(j = i \) then
 \begin{itemize}
 \item 4. return \(A[j] \)
 \end{itemize}
 \item 5. else if \(j > i \) then
 \begin{itemize}
 \item 6. return \(\text{quick-select1}(A[0, 1, \ldots, j - 1], i) \)
 \end{itemize}
 \item 7. else if \(j < i \) then
 \begin{itemize}
 \item 8. return \(\text{quick-select1}(A[j + 1, j + 2, \ldots, n - 1], i - j - 1) \)
 \end{itemize}
\end{itemize}

- Here the pivot is selected arbitrarily (e.g., the first item in the array)
Analysis of quick-select1

Worst-case analysis: Recursive call could always have size \(n - 1 \).
Recurrence given by

\[
T(n) = \begin{cases}
T(n - 1) + cn, & n \geq 2 \\
\quad d, & n = 1
\end{cases}
\]

Solution:

\[
T(n) = cn + c(n - 1) + c(n - 2) + \cdots + c \cdot 2 + d \in \Theta(n^2)
\]

Best-case analysis: First chosen pivot could be the \(k \)th element
No recursive calls; total cost is \(\Theta(n) \).
Average-case analysis of quick-select

Assume all $n!$ permutations are equally likely.

Define $T(n, i)$ as average cost for selecting ith item from size-n array:

$$T(n, i) = cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1, i - j - 1) + \sum_{j=i+1}^{n-1} T(j, i) \right)$$

We could analyze this recurrence directly, or be a little lazier and still get the same asymptotic result.

For simplicity, define $T(n) = \max_{0 \leq k < n} T(n, k)$.
Average-case analysis of quick-select

The cost is determined by \(j \), the position of the pivot \(A[0] \). For more than half of the \(n! \) permutations, \(\frac{n}{4} \leq i < \frac{3n}{4} \).

In this case, the recursive call will have length at most \(\left\lfloor \frac{3n}{4} \right\rfloor \), for any \(k \).

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T\left(\left\lfloor \frac{3n}{4} \right\rfloor \right) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]

Rearranging gives:

\[
T(n) \leq 2cn + T\left(\left\lfloor \frac{3n}{4} \right\rfloor \right) \leq 2cn + 2c\left(\frac{3n}{4} \right) + 2c\left(\frac{9n}{16} \right) + \cdots + d
\]

\[
\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)
\]

Since \(T(n) \) must be \(\Omega(n) \) (why?), \(T(n) \in \Theta(n) \).
Linear-time selection

- Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.
- Is there any selection algorithm that runs in $O(n)$ in the worst-case?
 - The answer is Yes; **Median of medians** algorithms!
 - It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
- Partition the whole array using x as the pivot.
- Recurs on the corresponding subarray as in Quick-select.