COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 6 - Jan. 18, 2019
CLRS 7.1, 7-4, 9.1, 9.3
University of Manitoba
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)
- The worst-case running time is?
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)
- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)
- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.
- The best-case running time is?
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array).

- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.

- The best-case running time is?
 - It is $\Theta(n \log n)$, when there are a linear number (e.g., roughly half) of items on each side of pivots.
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)
- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.
- The best-case running time is?
 - It is $\Theta(n \log n)$, when there are a linear number (e.g., roughly half) of items on each side of pivots.
- The average-case running time is?
 - When the input is shuffled, the running time is $O(n \log n)$.
A sorting algorithm is comparison-based if it can sort any array of objects by just pairwise comparison of them.

E.g., you want to sort a bag of potatoes using a balance scale.

It is known that any comparison-based sorting algorithm runs in $\Omega(n \log n)$ in the worst-case.

Can we improve the worst-case running time $\Theta(n^2)$ of Quick-sort to $\Theta(n \log n)$?

This relates to the selection problem.
Comparison-based algorithms

A sorting algorithm is **comparison-based** if it can sort any array of **objects** by just pairwise comparison of them.

- E.g., you want to sort a bag of potatoes using a balance scale.

- It is known that any comparison-based sorting algorithm runs in \(\Omega(n \log n) \) in the worst-case.

- Can we improve the worst-case running time \(\Theta(n^2) \) of Quick-sort to \(\Theta(n \log n) \)?
 - This relates to the **selection problem**
Selection & order statistics

- The \(i\)’th order statistic of a set of comparable elements is the \(i\)’th smallest value in the set.
 - The \([n/2]\)’th order statistic among \(n\) items is called median.
 - The \([n/4]\)’th order statistic among \(n\) items is called quartile.
- How can we find the 0’th or \((n - 1)\)’th order statistic in \(\Theta(n)\).
Selection & order statistics

- The i’th order statistic of a set of comparable elements is the i’th smallest value in the set.
 - The $\lceil n/2 \rceil$’th order statistic among n items is called **median**.
 - The $\lceil n/4 \rceil$’th order statistic among n items is called **quartile**.

- How can we find the 0’th or $(n - 1)$’th order statistic in $\Theta(n)$.
 - Finding min/max \rightarrow a linear scan is sufficient!
Selection & order statistics

- The i’th order statistic of a set of comparable elements is the i’th smallest value in the set.
 - The $\lceil n/2 \rceil$’th order statistic among n items is called median.
 - The $\lceil n/4 \rceil$’th order statistic among n items is called quartile.
- How can we find the 0’th or $(n - 1)$’th order statistic in $\Theta(n)$.
 - Finding min/max → a linear scan is sufficient!
- Selection problem: find the i’th order statistics:
 - The input is a set of n comparable objects (e.g., integers) and an integer i
 - The output is the element at index i of the sorted array ($i + 1$’th smallest item)
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?
Selection algorithms

- **Attempt I**: sort \(A \) and return the element at index \(i \) in the sorted array.
 - E.g., use Merge-sort; sorting takes \(\Theta(n \log n) \) and accessing the element in sorted array takes \(\Theta(1) \).
 - Can we do better?

- **Attempt II**: apply **heapify** on \(A \) and **extract-min** \(i + 1 \) times (we assume indices start at 0).
 - Heapify takes \(\Theta(n) \) and each extract-min operation takes \(\Theta(\log n) \)
 - Select takes \(\Theta(n + i \log n) \), which is \(\Theta(n \log n) \) when \(i \in \Theta(n) \).
 - The running time is \(\Theta(n) \) for \(i \in O(n/\log n) \).
Selection algorithms

- **Attempt I:** sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- **Attempt II:** apply **heapify** on A and **extract-min** $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n/\log n)$.

- What is the minimum time required for selection?
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- Attempt II: apply heapify on A and extract-min $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n/\log n)$.

- What is the minimum time required for selection?
 - We need to read the whole input, i.e., the running time of any algorithm is $\Omega(n)$.
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- Attempt II: apply heapify on A and extract-min $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n / \log n)$.

- What is the minimum time required for selection?
 - We need to read the whole input, i.e., the running time of any algorithm is $\Omega(n)$.
 - Can we select in $\Theta(n)$?
Selection algorithms

- Quick-select: similar to Quick-sort, but for selection
- Select a pivot, partition around it, and recurs on the one side that contains the i’th element
QuickSelect Review

quick-select1\((A, i)\)
\(A: \text{ array of size } n, \quad i: \text{ integer s.t. } 0 \leq i < n\)
1. \(p \leftarrow \text{choose-pivot1}(A)\)
2. \(j \leftarrow \text{partition}(A, p)\)
3. \(\text{if } j = i \text{ then}\)
 4. \(\text{return } A[j]\)
5. \(\text{else if } j > i \text{ then}\)
 6. \(\text{return } \text{quick-select1}(A[0, 1, \ldots, j - 1], i)\)
7. \(\text{else if } j < i \text{ then}\)
 8. \(\text{return } \text{quick-select1}(A[j + 1, j + 2, \ldots, n - 1], i - j - 1)\)

- If pivot is at position \(j\), the cost of recursive call parameters will be:
 - None if \(j = i\).
 - \((j, i)\) if \(j > i\) (recursing on the left subarray).
 - \((n - j - 1, i - j - 1)\) if \(j < i\) (recursing on the right subarray).
Average-case analysis of quick-select

Assume all \(n! \) permutations are equally likely.

Define \(T(n, i) \) as average cost for selecting \(i \)th item from size-\(n \) array:

The cost for recursive calls (RC) is

\[
RC = \begin{cases}
0 & j = i \\
T(j, i) & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}
\]

For simplicity, define \(T(n) = \max_{0 \leq k < n} T(n, k) \).
Average-case analysis of quick-select

Assume all \(n! \) permutations are equally likely.
Define \(T(n, i) \) as average cost for selecting \(i \)th item from size-\(n \) array: The cost for recursive calls (RC) is

\[
RC = \begin{cases}
0 & j = i \\
T(j, i) & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}
\]

Shuffled input → it is equally likely for the pivot to be at any position:

\[
T(n, i) = \left(cn \right)_{\text{partition}} + \frac{1}{n} \left((\text{RC if } j=0) + (\text{RC if } j=1) + \ldots + (\text{RC if } j=n-1) \right)
\]

\[
= \left(cn \right)_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1, i - j - 1) + \sum_{j=i+1}^{n-1} T(j, i) \right)
\]

For simplicity, define \(T(n) = \max_{0 \leq k < n} T(n, k) \).
Average-case analysis of quick-select

\[T(n) \leq \underbrace{cn}_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1) + \sum_{j=i+1}^{n-1} T(j) \right) \]
Average-case analysis of quick-select

\[T(n) \leq cn \underbrace{\text{partition}}_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right) \]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.
Average-case analysis of quick-select

\[T(n) \leq \begin{cases}
 cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right) & \text{partition} \\
 \frac{1}{n} \left(T(n) \right) \quad & n = 1
\end{cases} \]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.

- The recursive cost for a good pivot is at most \(T(3n/4) \).
- The recursive cost for a bad pivot is at most \(T(n) \).

The average cost is then given by:

\[T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d & n = 1
\end{cases} \]
The average cost is then given by:

\[T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d, & n = 1
\end{cases} \]
The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2}(T(n) + T(\lfloor 3n/4 \rfloor)), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]

Rearranging gives:

\[
T(n) \leq 2cn + T(\lfloor 3n/4 \rfloor) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d \\
\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)
\]

Since \(T(n) \) must be \(\Omega(n) \) (why?), \(T(n) \in \Theta(n) \).
Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.

Is there any selection algorithm that runs in $O(n)$ in the worst-case?

- The answer is Yes; Median of medians algorithms!
- It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
 - x will be the pivot for quick-select
- Partition the whole array using x as the pivot
- Recurs on the corresponding subarray as in Quick-select
Median of five example

........ 2 54 44 4 25
........ 5 5 32 18 39
........ 9 87 21 26 47
........ 19 9 13 16 56
........ 24 10 2 19 71
Median of five example

\[
\begin{array}{ccccc}
2 & 5 & 2 & 4 & 25 \\
5 & 9 & 13 & 16 & 39 \\
9 & 10 & 21 & 18 & 47 \\
19 & 54 & 32 & 19 & 56 \\
24 & 87 & 44 & 26 & 71 \\
\end{array}
\]

Median of each group
Median of five example

Find X, the median of medians
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $< x$.
 - This implies half of blocks include at least 3 elements $< x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x

- Similarly, there will be at least $3n/10$ elements larger than x.

- We assume distinct items; when pivot is equal to multiple items, you can update the partition algorithm so that the pivot is the ‘best’ among items with the same key.

- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $< x$.
 - This implies half of blocks include at least 3 elements $< x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x

- Similarly, there will be at least $3n/10$ elements larger than x.

- We assume distinct items; when pivot is equal to multiple items, you can update the partition algorithm so that the pivot is the ‘best’ among items with the same key.

- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot

- In the worst case, the size of recursive call is always $7n/10$.

\[
T(n) \leq \begin{cases} \\
\frac{T(n/5)}{d} + \frac{cn}{partition\ around\ x} + T(7n/10), & n \geq 2 \\
T(n/5) + cn & n = 1 \\
\end{cases}
\]
Median of five algorithm

\[T(n) \leq \begin{cases}
T(n/5) + \frac{cn}{5} + T(7n/10), & n \geq 2 \\
T(n) & n = 1
\end{cases} \]

- We guess that \(T(n) \in O(n) \) and use strong induction to prove it.
- We prove there is a value \(M \) s.t. \(T(n) \leq Mn \) for all \(n \geq 1 \).
- For the base we have \(T(1) = d \leq M \) as long as \(M \geq d \).
- For any value of \(n \) we can state:

\[
T(n) \leq T(n/5) + T(7n/10) + cn \quad \text{(definition)} \\
\leq M \cdot n/5 + M \cdot 7n/10 + cn \quad \text{(induction hypothesis)} \\
= (9M/10 + c)n \\
\leq M \cdot n \quad \text{as long as } M \geq 9M/10 + c, \text{i.e., } M \geq 10c
\]

so, we showed for \(M = \max\{10c, d\} \) we have \(T(n) \leq M \cdot n \) for \(n \geq 1 \). So, \(T(n) \in O(n) \).
Quick-sort revisit

Theorem

It is possible to select the i’th smallest item in a list of n numbers in time $\Theta(n)$

- Quick-sort in $O(n \log n)$ time:
 - Using select algorithm to choose the pivot as the median of n items in $O(n)$ time
 - Partition around pivot in $O(n)$ time (selecting pivot as n/c’th smallest item for constant c gives the same result)
 - Sort the two sides of pivot recursively in time $2T(n/2)$.

 The cost will be $T(n) = 2T(n/2) + \Theta(n)$, which gives $T(n) = \Theta(n \log n)$ [case II of Master theorem]

Theorem

A smart selection of pivot, using linear-time select, results in quick-sort running in $\Theta(n \log n)$
QuickSelect Algorithm

\[
\text{quick-select1}(A, i)
\]

\(A\): array of size \(n\), \(i\): integer s.t. \(0 \leq i < n\)

1. \(p \leftarrow \text{choose-pivot1}(A)\)
2. \(j \leftarrow \text{partition}(A, p)\)
3. \textbf{if } j = i \textbf{ then}
4. \hspace{2em} \textbf{return } A[j]
5. \textbf{else if } j > i \textbf{ then}
6. \hspace{2em} \textbf{return } \text{quick-select1}(A[0, 1, \ldots, j - 1], i)\)
7. \textbf{else if } j < i \textbf{ then}
8. \hspace{2em} \textbf{return } \text{quick-select1}(A[j + 1, j + 2, \ldots, n - 1], i - j - 1)\)

- Here the pivot is selected arbitrarily (e.g., the first item in the array)
Worst-case analysis: Recursive call could always have size $n - 1$.

Recurrence given by $T(n) = \begin{cases} T(n - 1) + cn, & n \geq 2 \\ d, & n = 1 \end{cases}$

Solution: $T(n) = cn + c(n - 1) + c(n - 2) + \cdots + c \cdot 2 + d \in \Theta(n^2)$
Analysis of quick-select1

Worst-case analysis: Recursive call could always have size \(n - 1 \).

Recurrence given by:

\[
T(n) = \begin{cases}
T(n - 1) + cn, & n \geq 2 \\
 d, & n = 1
\end{cases}
\]

Solution:

\[
T(n) = cn + c(n - 1) + c(n - 2) + \cdots + c \cdot 2 + d \in \Theta(n^2)
\]

Best-case analysis: First chosen pivot could be the \(k \)th element.

No recursive calls; total cost is \(\Theta(n) \).
Average-case analysis of quick-select

Assume all \(n! \) permutations are equally likely.

Define \(T(n, i) \) as average cost for selecting \(i \)th item from size-\(n \) array:

\[
T(n, i) = cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1, i-j-1) + \sum_{j=i+1}^{n-1} T(j, i) \right)
\]

We could analyze this recurrence directly, or be a little lazier and still get the same asymptotic result.

For simplicity, define \(T(n) = \max_{0 \leq k < n} T(n, k) \).
Average-case analysis of quick-select

The cost is determined by \(j \), the position of the pivot \(A[0] \). For more than half of the \(n! \) permutations, \(\frac{n}{4} \leq i < \frac{3n}{4} \).

In this case, the recursive call will have length at most \(\left\lfloor \frac{3n}{4} \right\rfloor \), for any \(k \).

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T\left(\left\lfloor \frac{3n}{4} \right\rfloor \right) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]
Average-case analysis of quick-select

The cost is determined by \(j \), the position of the pivot \(A[0] \).
For more than half of the \(n! \) permutations, \(\frac{n}{4} \leq i < \frac{3n}{4} \).

In this case, the recursive call will have length at most \(\left\lfloor \frac{3n}{4} \right\rfloor \), for any \(k \).
The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T\left(\left\lfloor \frac{3n}{4} \right\rfloor \right) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]

Rearranging gives:

\[
T(n) \leq 2cn + T\left(\left\lfloor \frac{3n}{4} \right\rfloor \right) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d
\]

\[
\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)
\]

Since \(T(n) \) must be \(\Omega(n) \) (why?), \(T(n) \in \Theta(n) \).
Linear-time selection

Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.

Is there any selection algorithm that runs in $O(n)$ in the worst-case?

- The answer is Yes; Median of medians algorithms!
- It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
- Partition the whole array using x as the pivot
- Recurs on the corresponding subarray as in Quick-select