COMP 3170 - Analysis of Algorithms & Data Structures

Shahin Kamali

Lecture 6 - Jan. 18, 2019

CLRS 7.1, 7-4, 9.1, 9.3

University of Manitoba
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)
- The worst-case running time is?

It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.

The best-case running time is?

It is $\Theta(n \log n)$, when there are a linear number (e.g., roughly half) of items on each side of pivots.

The average-case running time is?

When the input is shuffled, the running time is $O(n \log n)$.
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)
- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)

- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.

- The best-case running time is?
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)

- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.

- The best-case running time is?
 - It is $\Theta(n \log n)$, when there are a linear number (e.g., roughly half) of items on each side of pivots.
Quick-sort review

- Assume the pivot is selected as an arbitrary element (e.g., the first item in the array)

- The worst-case running time is?
 - It is $\Theta(n^2)$ when the pivots are always the smallest/largest items.

- The best-case running time is?
 - It is $\Theta(n \log n)$, when there are a linear number (e.g., roughly half) of items on each side of pivots.

- The average-case running time is?
 - When the input is shuffled, the running time is $O(n \log n)$.

Comparison-based algorithms

A sorting algorithm is **comparison-based** if it can sort any array of **objects** by just pairwise comparison of them.

- E.g., you want to sort a bag of potatoes using a balance scale.

It is known that any comparison-based sorting algorithm runs in $\Omega(n \log n)$ in the worst-case.
A sorting algorithm is **comparison-based** if it can sort any array of **objects** by just pairwise comparison of them.

- E.g., you want to sort a bag of potatoes using a balance scale.

It is known that any comparison-based sorting algorithm runs in $\Omega(n \log n)$ in the worst-case.

Can we improve the worst-case running time $\Theta(n^2)$ of Quick-sort to $\Theta(n \log n)$?

- This relates to the **selection problem**
Selection & order statistics

- The i’th order statistic of a set of comparable elements is the i’th smallest value in the set.
 - The $\lceil n/2 \rceil$’th order statistic among n items is called **median**.
 - The $\lceil n/4 \rceil$’th order statistic among n items is called **quartile**.
- How can we find the 0’th or $(n - 1)$’th order statistic in $\Theta(n)$.
Selection & order statistics

The \(i \)'th order statistic of a set of comparable elements is the \(i \)'th smallest value in the set.

- The \(\lceil n/2 \rceil \)'th order statistic among \(n \) items is called \textbf{median}.
- The \(\lceil n/4 \rceil \)'th order statistic among \(n \) items is called \textbf{quartile}.

How can we find the 0’th or \((n - 1) \)'th order statistic in \(\Theta(n) \).

- Finding min/max \(\rightarrow \) a linear scan is sufficient!
Selection & order statistics

- The i'th order statistic of a set of comparable elements is the i'th smallest value in the set.
 - The $\lceil n/2 \rceil$'th order statistic among n items is called median.
 - The $\lceil n/4 \rceil$'th order statistic among n items is called quartile.

- How can we find the 0'th or $(n - 1)'$th order statistic in $\Theta(n)$.
 - Finding min/max \rightarrow a linear scan is sufficient!

Selection problem: find the i'th order statistics:

- The input is a set of n comparable objects (e.g., integers) and an integer i
- The output is the element at index i of the sorted array ($i + 1$'th smallest item)
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?
Selection algorithms

- **Attempt I**: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- **Attempt II**: apply **heapify** on A and **extract-min** $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n/\log n)$.

What is the minimum time required for selection?

We need to read the whole input, i.e., the running time of any algorithm is $\Omega(n)$.

Can we select in $\Theta(n)$?
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- Attempt II: apply **heapify** on A and **extract-min** $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n / \log n)$.

What is the minimum time required for selection?
Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- Attempt II: apply heapify on A and extract-min $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n/\log n)$.

- What is the minimum time required for selection?
 - We need to read the whole input, i.e., the running time of any algorithm is $\Omega(n)$.

Selection algorithms

- Attempt I: sort A and return the element at index i in the sorted array.
 - E.g., use Merge-sort; sorting takes $\Theta(n \log n)$ and accessing the element in sorted array takes $\Theta(1)$.
 - Can we do better?

- Attempt II: apply heapify on A and extract-min $i + 1$ times (we assume indices start at 0).
 - Heapify takes $\Theta(n)$ and each extract-min operation takes $\Theta(\log n)$
 - Select takes $\Theta(n + i \log n)$, which is $\Theta(n \log n)$ when $i \in \Theta(n)$.
 - The running time is $\Theta(n)$ for $i \in O(n / \log n)$.

- What is the minimum time required for selection?
 - We need to read the whole input, i.e., the running time of any algorithm is $\Omega(n)$.
 - Can we select in $\Theta(n)$?
Selection algorithms

- Quick-select: similar to Quick-sort, but for selection
- Select a pivot, partition around it, and recurs on the one side that contains the \(i\)’th element
QuickSelect

quick-select1(A, i)
A: array of size n, i: integer s.t. 0 ≤ i < n
1. p ← choose-pivot1(A)
2. j ← partition(A, p)
3. if j = i then
 4. return A[j]
5. else if j > i then
 6. return quick-select1(A[0, 1, ..., j − 1], i)
7. else if j < i then
 8. return quick-select1(A[j + 1, j + 2, ..., n − 1], i − j − 1)

If pivot is at position j, the cost of recursive call parameters will be:
- None if j = i.
- (j, i) if j > i (recursing on the left subarray).
- (n − j − 1, i − j − 1) if j < i (recursing on the right subarray).
Average-case analysis of quick-select1

Assume all $n!$ permutations are equally likely.

Define $T(n, i)$ as average cost for selecting ith item from size-n array:

The cost for recursive calls (RC) is

$$RC = \begin{cases}
0 & j = i \\
T(j, i), & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}$$
Average-case analysis of quick-select

Assume all $n!$ permutations are equally likely.

Define $T(n, i)$ as average cost for selecting ith item from size-n array:

The cost for recursive calls (RC) is

$$RC = \begin{cases}
0 & j = i \\
T(j, i), & j > i \\
T(n - j - 1, i - j - 1) & j < i
\end{cases}$$

Shuffled input \rightarrow it is equally likely for the pivot to be at any position:

$$T(n, i) = cn + \frac{1}{n} \left((\text{RC if } j=0) + (\text{RC if } j=1) + \ldots + (\text{RC if } j=n-1) \right)$$

For simplicity, define $T(n) = \max_{0 \leq k < n} T(n, k)$.
Average-case analysis of quick-select1

\[T(n) \leq cn + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n - j - 1) + \sum_{j=i+1}^{n-1} T(j) \right) \]

We say that a pivot is good if the arrays on both sides have size at least \(\frac{n}{4} \).
This happens when pivot index \(j \) is in \(\left[\frac{n}{4}, \frac{3n}{4} \right) \).
Half of possible pivots are good and the rest are bad.
The recursive cost for a good pivot is at most \(T(\frac{3n}{4}) \).
The recursive cost for a bad pivot is at most \(T(n) \).
Average-case analysis of quick-select

\[T(n) \leq cn_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right) \]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.
Average-case analysis of quick-select

\[T(n) \leq \underbrace{cn}_{\text{partition}} + \frac{1}{n} \left(\sum_{j=0}^{i-1} T(n-j-1) + \sum_{j=i+1}^{n-1} T(j) \right) \]

- We say that a pivot is **good** if the arrays on both sides have size at least \(n/4 \)
 - This happens when pivot index \(j \) is in \([n/4, 3n/4)\).
 - Half of possible pivots are good and the rest are bad.
- The recursive cost for a good pivot is at most \(T(3n/4) \).
- The recursive cost for a bad pivot is at most \(T(n) \).

The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(\underbrace{T(n)}_{\text{bad pivot}} + \underbrace{T([3n/4])}_{\text{good pivot}} \right), & n \geq 2 \\
 d & n = 1
\end{cases}
\]
Average-case analysis of quick-select

The average cost is then given by:

\[T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d, & n = 1
\end{cases} \]
The average cost is then given by:

\[
T(n) \leq \begin{cases}
 cn + \frac{1}{2} \left(T(n) + T(\lfloor 3n/4 \rfloor) \right), & n \geq 2 \\
 d, & n = 1
\end{cases}
\]

Rearranging gives:

\[
T(n) \leq 2cn + T(\lfloor 3n/4 \rfloor) \leq 2cn + 2c(3n/4) + 2c(9n/16) + \cdots + d \\
\leq d + 2cn \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \in O(n)
\]

Since \(T(n) \) must be \(\Omega(n) \) (why?), \(T(n) \in \Theta(n) \).
Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.

Recurrence given by $T(n) = \begin{cases} T(n-1) + cn, & n \geq 2 \\ d, & n = 1 \end{cases}$
Although Quick-select runs in $O(n)$ on average, in the worst-case it is still super-linear.

- Recurrence given by $T(n) = \begin{cases} \ T(n - 1) + cn, & n \geq 2 \\ \ d, & n = 1 \end{cases}$

- Is there any selection algorithm that runs in $O(n)$ in the worst-case?

 - The answer is Yes; **Median of medians** algorithms!
 - It is a twist to Quick-select in which the pivot is selected a bit smarter!
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
Median of five algorithm

- A variant of Quick-select in which the pivot is selected more carefully.
- The input is an array A of n objects (assume n is divisible by 5).
- Divide A into $n/5$ blocks of size 5.
- Recursively find the median of the medians; denote it by x.
 - x will be the pivot for quick-select
A variant of Quick-select in which the pivot is selected more carefully.

The input is an array A of n objects (assume n is divisible by 5).

Divide A into $n/5$ blocks of size 5.

Recursively find the median of the medians; denote it by x.

- x will be the pivot for quick-select

Partition the whole array using x as the pivot

Recurs on the corresponding subarray as in Quick-select
Median of five example

<table>
<thead>
<tr>
<th>2</th>
<th>54</th>
<th>44</th>
<th>4</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>32</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>87</td>
<td>21</td>
<td>26</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>56</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>2</td>
<td>19</td>
<td>71</td>
</tr>
</tbody>
</table>
Median of five example

<table>
<thead>
<tr>
<th>2</th>
<th>5</th>
<th>2</th>
<th>4</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>21</td>
<td>18</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>54</td>
<td>32</td>
<td>19</td>
<td>56</td>
</tr>
<tr>
<td>24</td>
<td>87</td>
<td>44</td>
<td>26</td>
<td>71</td>
</tr>
</tbody>
</table>

Median of each group
Median of five example

Find \(X \), the median of medians.
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $< x$.
 - This implies half of blocks include at least 3 elements $< x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x.
- Similarly, there will be at least $3n/10$ elements larger than x.
- We assume distinct items; when pivot is equal to multiple items, you can update the partition algorithm so that the pivot is the ‘best’ among items with the same key.
- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot.

$T(n) \leq \begin{cases} T(n/5) & \text{if } n \geq 2 \\ \text{find } x + cn & \text{partition around } x + T(7n/10) & \text{recursive call} \end{cases}$
Median of five algorithm

- Pivot x is median of medians \rightarrow half of blocks have median $< x$.
 - This implies half of blocks include at least 3 elements $< x$.
 - So, there will be at least $n/5 \cdot 1/2 \cdot 3 = 3n/10$ elements smaller than x

- Similarly, there will be at least $3n/10$ elements larger than x.

- We assume distinct items; when pivot is equal to multiple items, you can update the partition algorithm so that the pivot is the ‘best’ among items with the same key

- Hence, the size of recursive call is always in the range $(3n/10, 7n/10)$.
 - x is always a ‘good’ pivot

- In the worst case, the size of recursive call is always $7n/10$.

$$T(n) \leq \begin{cases}
T(n/5) + \frac{cn}{d} + T(7n/10), & n \geq 2 \\
\text{find } x & \text{partition around } x & \text{recursive call}
\end{cases}$$

$n = 1$
Median of five algorithm

\[T(n) \leq \begin{cases}
T(n/5) + \left\{ \begin{array}{l}
\text{find } x \\
\text{partition around } x
\end{array} \right\} + T(7n/10), & n \geq 2 \\
\text{d}, & n = 1
\end{cases} \]

- We **guess** that \(T(n) \in O(n) \) and use **strong** induction to prove it.
- We prove there is a value \(M \) s.t. \(T(n) \leq Mn \) for all \(n \geq 1 \).
- For the base we have \(T(1) = d \leq M \) as long as \(M \geq d \).
- For any value of \(n \) we can state:

\[
T(n) \leq T(n/5) + T(7n/10) + cn \quad \text{(definition)}
\leq M \cdot n/5 + M \cdot 7n/10 + cn \quad \text{(induction hypothesis)}
= (9M/10 + c)n
\leq M \cdot n \quad \text{as long as } M \geq 9M/10 + c, i.e., M \geq 10c
\]

so, we showed for \(M = \max\{10c, d\} \) we have \(T(n) \leq M \cdot n \) for \(n \geq 1 \). So, \(T(n) \in O(n) \).
Quick-sort revisit

Theorem

It is possible to select the i’th smallest item in a list of n numbers in time $\Theta(n)$.
Quick-sort revisit

Theorem

It is possible to select the *i*’th smallest item in a list of *n* numbers in time \(\Theta(n) \)

- Quick-sort in \(O(n \log n) \) time:
 - Using select algorithm to choose the pivot as the median of *n* items in \(O(n) \) time
 - Partition around pivot in \(O(n) \) time (selecting pivot as \(n/c’ \)’th smallest item for constant \(c \) gives the same result)
 - Sort the two sides of pivot recursively in time \(2T(n/2) \).

The cost will be \(T(n) = 2T(n/2) + \Theta(n) \), which gives \(T(n) = \Theta(n \log n) \) [case II of Master theorem]

Theorem

A smart selection of pivot, using linear-time select, results in quick-sort running in \(\Theta(n \log n) \)