Picture is from the cover of the textbook CLRS.
Analysis of Recursions

- The following is the sloppy recurrence for time complexity of merge sort:

\[
T(n) = \begin{cases}
2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\
d & \text{if } n = 1.
\end{cases}
\]

- We can find the solution using alternation method:

\[
T(n) = 2T(n/2) + cn \\
= 2(2T(n/4) + cn/2) + cn = 4T(n/4) + 2cn \\
= 4(2T(n/8) + cn/4) + 2cn = 8T(n/8) + 3cn \\
= \ldots \\
= 2^k T(n/2^k) + kcn \\
= 2^{\log n} T(1) + \log ncn = \Theta(n \log n)
\]
Guess the growth function and prove an upper bound for it using induction.

- For merge-sort, prove $T(n) < Mn \log n$ for some value of M (that we choose).
- This holds for $n = 2$ since we have $T(2) = 2d + 2c$, which is less than $2M$ as long as $M \geq c + d$ (base of induction).
- Fix a value of n and assume the inequality holds for smaller values. We have $T(n) = 2T(n/2) + cn \leq 2M(n/2)(\log n/2) + cn = Mn \log n - Mn + cn \leq Mn \log n$ as long as M is selected to be no less than c (the inequality comes from the induction hypothesis).

This shows $T(n) \in O(n \log n)$
Master theorem

\[T(n) = \begin{cases}
 a T \left(\frac{n}{b} \right) + f(n) & \text{if } n > 1 \\
 d & \text{if } n = 1.
\end{cases} \]

\[(a \geq 1, \ b > 1, \ \text{and } f(n) > 0)\]

- Compare \(f(n) \) and \(n^{\log_b a} \)
- Case 1: if \(f(n) \in O(n^{\log_b a - \epsilon}) \), then \(T(n) \in \Theta(n^{\log_b a}) \)
- Case 2: if \(f(n) \in \Theta(n^{\log_b a}(\log n)^k) \) then \(T(n) \in \Theta(n^{\log_b a}(\log n)^{k+1}) \)
- Case 3: if \(f(n) \in \Omega(n^{\log_b a + \epsilon}) \) and if \(af(n/b) \leq cf(n) \) for some \(\textbf{constant } c < 1 \) (regularity condition), then \(T(n) \in \Theta(f(n)) \)
Master theorem examples

\[T(n) = 2T(n/2) + \log n? \text{ case 1: } T(n) \in \Theta(n) \]
Master theorem examples

\[T(n) = 2T(n/2) + \log n? \quad \text{case 1: } T(n) \in \Theta(n) \]
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- $T(n) = 4T(n/4) + 100n$? case 2: $T(n) \in \Theta(n \log n)$
Master theorem examples

- \(T(n) = 2T(n/2) + \log n \) case 1: \(T(n) \in \Theta(n) \)
- \(T(n) = 4T(n/4) + 100n \) case 2: \(T(n) \in \Theta(n \log n) \)
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- $T(n) = 4T(n/4) + 100n$? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2$?
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- $T(n) = 4T(n/4) + 100n$? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2$?
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$ for some $c < 1$. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds (c can be any value in the range $(3/4, 1)$, i.e., $T(n) \in \Theta(n^2)$)
Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- $T(n) = 4T(n/4) + 100n$? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2$?
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$ for some $c < 1$. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds (c can be any value in the range $(3/4, 1)$, i.e., $T(n) \in \Theta(n^2)$)
- $T(n) = T(n/2) + n(2 - \cos(n))$?
 - Case 3, check whether regularity condition holds.
 - For $n = 2k\pi$, we have $\cos(n/2) = -1$ and $\cos(n) = 1$; we have $af(n/b) = n/2(2 - \cos(n/2)) = 3n/2$, which is not within a factor $c < 1$ of $f(n) = n(2 - 1) = n$ [i.e., we cannot say $3n/2 \leq cn$ for any $c < 1$]. So we cannot get any conclusion from Master theorem.
Master theorem examples

- \(T(n) = 2T(n/2) + \log n \) case 1: \(T(n) \in \Theta(n) \)
- \(T(n) = 4T(n/4) + 100n \) case 2: \(T(n) \in \Theta(n \log n) \)
- \(T(n) = 3T(n/2) + n^2 \) case 3:
 - Case 3, check whether regularity condition holds, i.e., whether \(af(n/b) \leq cf(n) \) for some \(c < 1 \). Since we have \(3(n/2)^2 = 3/4n^2 \) the regularity condition holds (\(c \) can be any value in the range \((3/4, 1)\), i.e., \(T(n) \in \Theta(n^2) \))
- \(T(n) = T(n/2) + n(2 - \cos(n)) \) case 3:
 - Case 3, check whether regularity condition holds.
 - For \(n = 2k\pi \), we have \(\cos(n/2) = -1 \) and \(\cos(n) = 1 \); we have \(af(n/b) = n/2(2 - \cos(n/2)) = 3n/2 \), which is not within a factor \(c < 1 \) of \(f(n) = n(2 - 1) = n \) [i.e., we cannot say \(3n/2 \leq cn \) for any \(c < 1 \)]. So we cannot get any conclusion from Master theorem.
- \(T(n) = 2T(n/2) + n(\log n)^3 \) case 2, we have \(f(n) = \Theta(n^{\log_b^3}(\log n)^3) \) for \(k = 3 \). We have \(T(n) = \Theta(n(\log n)^4) \).
QuickSort is based on a sorting method developed by Hoare in 1960:

\[
\text{quick-sort1}(A) \\
A: \text{array of size } n \\
1. \text{if } n \leq 1 \text{ then return} \\
2. \quad p \leftarrow \text{choose-pivot1}(A) \\
3. \quad i \leftarrow \text{partition}(A, p) \\
4. \quad \text{quick-sort1}(A[0, 1, \ldots, i - 1]) \\
5. \quad \text{quick-sort1}(A[i + 1, \ldots, \text{size}(A) - 1])
\]

Here pivot is chosen arbitrarily (e.g., it is the first item in the array)
QuickSort

Analysis of Quick-sort

Worst case: \(T^{(\text{worst})}(n) = T^{(\text{worst})}(n - 1) + \Theta(n) \)
The algorithm has a running time of \(\Theta(n^2) \) in the worst case.
QuickSort

Analysis of Quick-sort

Worst case: $T^{(\text{worst})}(n) = T^{(\text{worst})}(n - 1) + \Theta(n)$

The algorithm has a running time of $\Theta(n^2)$ in the worst case.

Best case: $T^{(\text{best})}(n) = T^{(\text{best})}(\left\lfloor \frac{n-1}{2} \right\rfloor) + T^{(\text{best})}(\left\lceil \frac{n-1}{2} \right\rceil) + \Theta(n)$

Similar to Merge-sort; $T^{(\text{best})}(n) \in \Theta(n \log n)$
QuickSort

Analysis of Quick-sort

Worst case: \(T^{(\text{worst})}(n) = T^{(\text{worst})}(n - 1) + \Theta(n) \)
The algorithm has a running time of \(\Theta(n^2) \) in the worst case.

Best case: \(T^{(\text{best})}(n) = T^{(\text{best})}(\lfloor \frac{n-1}{2} \rfloor) + T^{(\text{best})}(\lceil \frac{n-1}{2} \rceil) + \Theta(n) \)
Similar to Merge-sort; \(T^{(\text{best})}(n) \in \Theta(n \log n) \)

Any other best case? \(T(n) = T(n/100) + T(99n/100) + cn \)
which belongs to \(\Theta(n \log n) \)
QuickSort

Average-case analysis of quick-sort

- In a comparison-based sorting the running time is proportional to the total number of comparisons performed during partitioning.

Let X_n be a random variable denoting the number of comparisons made by quicksort on an array of size n.

$$E[X_n] = \text{expected number of comparisons} = \sum_{i,j \in 0,\ldots,n-1} \text{prob}(\text{the } i\text{'th and } j\text{'th smallest elements are compared})$$

Elements i and j are compared iff one of them is selected as a pivot at some point before any other element in $\{i+1, i+2, \ldots, j-1\}$.

This occurs with probability $\frac{2}{j-i+1}$.

In a unsorted permutation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, what is the chance that 3 and 7 are compared?

$\frac{8}{9}$

The expected time complexity will be $\sum_{i,j \in 0,\ldots,n-1, j > i} \frac{2}{j-i+1}$.

COMP 3170 - Analysis of Algorithms & Data Structures
QuickSort

Average-case analysis of quick-sort

- In a **comparison-based sorting** the running time is proportional to the total number of comparisons performed during partitioning.
- Let X_n be a random variable denoting the number of comparisons made by quicksort on an array of size n.

$$E[X_n] = \text{expected no. of comparisons} = \sum_{i,j \in 0,...,n-1} \text{prob}(\text{the i’th and j’th smallest elements are compared})$$
QuickSort

Average-case analysis of quick-sort

- In a **comparison-based sorting** the running time is proportional to the total number of comparisons performed during partitioning.

- Let X_n be a random variable denoting the number of comparisons made by quicksort on an array of size n.

 $$E[X_n] = \text{expected no. of comparisons} = \sum_{i,j \in \{0, \ldots, n-1\}} \text{prob}(\text{the i’th and j’th smallest elements are compared})$$

- Elements i and j are compared iff one of them is selected as a pivot at some point before any other element in $\{i+1, i+2, \ldots, j-1\}$. This occurs with probability $\frac{2}{j-i+1}$.

 - In a unsorted permutation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, what is the chance that 3 and 7 are compared?
 - the chance that 4, 5, 6 are Not selected as pivot before 3, 7
 - \rightarrow 2/5
QuickSort

Average-case analysis of quick-sort

- In a **comparison-based sorting** the running time is proportional to the total number of comparisons performed during partitioning.

- Let X_n be a random variable denoting the number of comparisons made by quicksort on an array of size n.

$$E[X_n] = \text{expected no. of comparisons} = \sum_{i,j \in 0,\ldots,n-1} \text{prob}(\text{the } i\text{'th and } j\text{'th smallest elements are compared})$$

- Elements i and j are compared iff one of them is selected as a pivot at some point before any other element in $\{i + 1, i + 2, \ldots, j - 1\}$. This occurs with probability $\frac{2}{j-i+1}$.

 - In a unsorted permutation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, what is the chance that 3 and 7 are compared? → the chance that 4, 5, 6 are Not selected as pivot before 3, 7 → $2/5$

- The expected time complexity will be

$$\sum_{i,j \in 0,\ldots,n-1,j>i} \frac{2}{j-i+1}$$
QuickSort

Average-case analysis of quick-sort

For the expected time complexity of Quicksort, we have:

\[
E[X_n] = \sum_{i,j \in 0,\ldots,n-1, j > i} \frac{2}{j - i + 1}
\]

\[
= \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \frac{2}{j - i + 1}
\]

\[
= \sum_{i=0}^{n-2} \sum_{k=2}^{n-i} \frac{2}{k} < \sum_{i=0}^{n-2} \sum_{k=2}^{n} \frac{2}{k}
\]

\[
= \sum_{i=0}^{n-2} \Theta(\log n) = \Theta(n \log n)
\]

So, \(E[X_n]\) belongs to \(O(n)\). Note that we used the fact that the sum of Harmonic series belongs to \(\Theta(\log n)\).