Degree sequence conditions for partial Steiner triple systems

Melissa S. Keranen William Kocay Donald L. Kreher Pak Ching Li
Mathematical Sciences, Computer Science, Mathematical Sciences, Computer Science,
Michigan Technological University, University of Manitoba,
Houghton, Michigan, Winnipeg, Manitoba
49913-0402, USA Canada, R3T 2N2

April 16, 2008

A partial Steiner triple system (PSTS) of order n is a collection of 3-element subsets of the vertex set \{1, 2, \ldots, n\} called triples that pairwise intersect in at most one vertex. If \mathcal{H} is a PSTS and x is a vertex, then the degree of x is d_x and is the number of triples in \mathcal{H} that contain x. The sequence $D = (d_1, d_2, \ldots, d_n)$ is called the degree sequence of the PSTS \mathcal{H}, and we assume without loss that $d_1 \geq d_2 \geq \ldots \geq d_n$.

Theorem Let $D = (d_1, d_2, \ldots, d_n)$ be the degree sequence of a PSTS \mathcal{H}, where $d_1 \geq d_2 \geq \cdots \geq d_n$. Then $\sum_i d_i \equiv 0 \pmod{3}$, and the following conditions hold for $k = 1, 2, \ldots, n$.

\[
\sum_{i=1}^{k} d_i \leq \frac{3}{2} \binom{k}{2} + \frac{1}{2} \sum_{j=k+1}^{n} \min\{k, d_j\}, \quad \text{if } k \leq \frac{n}{2}
\]

\[
\sum_{i=1}^{k} d_i \leq \binom{k}{2} + \frac{1}{2} (n-k) \left\lfloor \frac{k}{2} \right\rfloor + \frac{1}{2} \sum_{j=k+1}^{n} \min\{k, d_j\}, \quad \text{if } k > \frac{n}{2}.
\]

Proof. Let $V_k = \{1, 2, \ldots, k\}$ and let $\overline{V}_k = \{k + 1, k + 2, \ldots, n\}$. A triple T is an $(i, 3-i)$ triple if $|T \cap V_k| = i$ and $|T \cap \overline{V}_k| = 3-i$. Let N_i be the number of $(i, 3-i)$ triples, $i = 0, 1, 2, 3$. Also let $N_i(x)$ be the number of $(i, 3-i)$ triples that contain the vertex x. Summing $N_i(x)$ over all $x \in V_k$ counts each $(i, 3-i)$ triple i times, thus for $i = 0, 1, 2, 3$ we have

\[
\sum_{x \in V_k} N_i(x) = i \cdot N_i.
\]

1
Similarly, summing over \(y \in \overline{V}_k \) we obtain for \(i = 0, 1, 2, 3 \)
\[
\sum_{y \in \overline{V}_k} N_i(y) = (3 - i) \cdot N_i.
\]
(2)

The number of points of intersection with triples and \(V_k \) is
\[
\sum_{x \in V_k} d_x = 3N_3 + 2N_2 + N_1 = 3N_3 + \frac{3}{2}N_2 + \frac{1}{2}N_2 + N_1
\]
\[
= 3N_3 + \frac{3}{2}N_2 + \sum_{y \in \overline{V}_k} \left(\frac{1}{2}N_2(y) + \frac{1}{2}N_1(y) \right)
\]
\[
= 3N_3 + \frac{3}{2}N_2 + \frac{1}{2} \sum_{y \in \overline{V}_k} (N_2(y) + N_1(y))
\]

This last follows from Equation 2. For \(y \in \overline{V}_k \), we have
\[
N_2(y) + N_1(y) \leq N_2(y) + N_1(y) + N_0(y) = d_y.
\]

Counting the number of points in \(V_k \) that are in triples that contain \(y \) we see that
\[
N_2(y) + N_1(y) \leq 2N_2(y) + N_1(y) \leq k,
\]
because each type \((i, 3 - i)\) triple contains \(i \) points of \(V_k \) and any two triples that contain a fixed point \(y \) cannot intersect in another point. Thus
\[
\sum_{x \in V_k} d_x \leq 3N_3 + \frac{3}{2}N_2 + \frac{1}{2} \sum_{y \in \overline{V}_k} \min\{d_y, k\}
\]

Every type \((2, 1)\) triple contains one of the \(\binom{k}{2} \) possible pairs in \(V_k \) and every type \((3, 0)\) contains 3. In a PSTS no pair is covered twice, thus \(3N_3 + N_2 \leq \binom{k}{2} \), and hence
\[
\sum_{x \in V_k} d_x \leq \binom{k}{2} + \frac{1}{2}N_2 + \frac{1}{2} \sum_{y \in \overline{V}_k} \min\{d_y, k\}.
\]

Now for \(y \in \overline{V}_k \) we have \(N_2(y) \leq \lfloor \frac{k}{2} \rfloor \), so summing over \(y \in \overline{V}_k \) we see that Equation 2 gives \(N_2 \leq (n-k) \lfloor k/2 \rfloor \). For \(x \in V_k \) we have \(N_2(x) \leq (k-1) \). Thus using Equation 1 to sum over \(x \in V_k \) we obtain \(2N_2 \leq k(k-1) \). Consequently
\[
N_2 \leq \min\left\{ \frac{k(k-1)}{2}, (n-k) \left\lfloor \frac{k}{2} \right\rfloor \right\} = \begin{cases} \binom{k}{2}, & \text{if } k \leq \frac{n}{2} \\ (n-k) \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } k > \frac{n}{2} \end{cases}
\]
These 2 observations yield

\[
\sum_{x \in V_k} d_x \leq \begin{cases}
\frac{3}{2} \binom{k}{2} + \frac{1}{2} \sum_{y \in V_k} \min\{k, d_y\}, & \text{if } k \leq \frac{n}{2} \\
\frac{1}{2} (n-k) \left\lfloor \frac{k}{2} \right\rfloor + \frac{1}{2} \sum_{y \in V_k} \min\{k, d_y\}, & \text{if } k > \frac{n}{2}.
\end{cases}
\]

We conjecture that the conditions in the theorem are also sufficient. It should be noted that the condition obtained when \(k = 1 \) is that \(2d_1 < n \). This is obviously necessary as the triangles containing a given point must otherwise be disjoint. In [1] the authors show that \(2r < n \) and \(rn \equiv 0 \pmod{3} \) are necessary and sufficient for the existence of a partial Steiner triple system with degree sequence \((r, r, r, \ldots, r) \) \(n \) times. This latter result also follows from the results in [2]. A partial Steiner triple system is said to be equitable if \(|d_x - d_y| \leq 1 \) for any two points \(x \) and \(y \). In [2] it is shown that if there exists a partial Steiner triple system of order \(n \) with \(b \) triples, then there exists an equitable partial Steiner triple system of order \(n \) with \(b \) triples. Thus, by taking a maximum packing of triples on \(n \) points, deleting the appropriate number of triples, and applying this result, one can obtain a partial Steiner triple system in which all the vertices have degree \(r \), whenever \(2r < n \) and \(rn \equiv 0 \pmod{3} \).

References
