Antimagic labelings of power of cycles graphs

Pak Ching (Ben) Li
Dept. of Computer Science
University of Manitoba
Winnipeg, Manitoba
Canada R3T 2N2
April 13, 2011

Abstract

An antimagic labeling of a graph with n vertices and m edges is a bijection from the set of edges to the integers $1, 2, ..., m$ such that all n vertex sums are pairwise distinct. For a cycle C_n of length n, the k^{th} power of C_n, denoted by C_k^n, is the supergraph formed by adding an edge between all pairs of vertices of C_n with distance at most k. Antimagic labelings for C_k^n are given where $k = 2, 3, 4$.

1 Introduction

In this paper, all graphs are finite, undirected, and simple. Let $G = (V, E)$ be a graph with n vertices and m edges. Suppose the edges of G are labeled using distinct values from $\{1, 2, ..., m\}$. For each vertex v, define its vertex sum be the sum of the labels of the edges incident on v. A labeling is an antimagic labeling of G if all n vertex sums are pairwise distinct. If a graph has an antimagic labeling, then the graph is antimagic. For a vertex v, denote its vertex-sum by S_v.

In 1990, Hartsfield and Ringel [3] introduced the notion of antimagic labelings and antimagic graphs. They conjectured that every connected graph, other than K_2, is antimagic. In 2004, Alon et al. [1] validated this conjecture for graphs having minimum degree $\Omega(\log n)$. They also showed that graphs with maximum degree at least $n - 2$ are antimagic, as well as complete k-partite graphs, for any $k \geq 2$. In 2005, Hefetz [4] showed that a graph with 3^k vertices admitting a K_3-factor is antimagic. Also in 2005, Wang [6] showed that the Cartesian product of a finite number of cycles is antimagic. In addition, Wang showed that the Cartesian product of an antimagic regular graph and a cycle is antimagic. In 2008, Wang and Hsiao [7] showed that toroidal grids are antimagic.

Suppose $C_n = (V, E)$ is a cycle of length n and k is a positive integer. The k^{th} power of C_n, denoted by C_k^n, is the supergraph formed by adding an edge between all pairs of vertices of C_n with distance at most k. In 2010, Lee, Lin, and Tsai [5] showed that if n is odd, the power of cycles graph C_2^n is antimagic. Other results can be found in the dynamic survey by Gallian [2].

In this report, I extended the work of Lee, Lin and Tsai [5] by giving an alternate proof of their result on C_2^n, where n is odd. I also showed that, for n even, C_2^n is antimagic by constructing an antimagic labeling for C_2^n antimagic. Then, I extended the antimagic labelings for C_2^n to obtain antimagic labelings for C_3^n, whenever $n \geq 6$. Finally, I showed that the antimagic labelings for C_3^n, where n is odd, extends to antimagic labelings for C_4^n.

2 The Graph C_2^n

In this section, I will show that C_2^n is antimagic for all $n \geq 4$. Note that when $n = 3$, $C_2^3 = C_3$. I begin by providing an antimagic labeling of C_2^n that differs from the one given in [5].

*Research supported by NSERC Discovery Grant 250389-06
Theorem 2.1 ([5]) If \(n > 3 \) is an odd integer, then \(C_n^2 \) is antimagic.

Proof: The vertices of \(C_n^2 \) will be \(V = \{0, 1, 2, ..., n-1\} \). I note that \(C_n^2 \) has 2\(n \) edges. Define a bijection function \(L : E \rightarrow \{1, 2, ..., 2n\} \) that labels the edges of the graph as follows:

\[
L(i, j) = \begin{cases}
 i + 1 & : 0 \leq i \leq n - 2 \text{ and } j = i + 1 \\
 n & : i = n - 1 \text{ and } j = 0 \\
 n + 1 & : i = n - 1, j = 1 \\
 2n & : i = n - 2, j = 0 \\
 n + i + 2 & : 0 \leq i \leq n - 3 \text{ and } j = i + 2
\end{cases}
\]

I claim that the labeling \(L \) is an antimagic labeling of \(C_n^2 \). Observe that \(S_1 = 1 + 2 + (n+1) + (n+3) = 2n + 7 \) and \(S_2 = 2 + 3 + (n+2) + (n+4) = 2n + 11 \), which is 4 greater than \(S_1 \). In fact, it is easy to verify that for 1 \(\leq i \leq n - 3 \), \(S_{i+1} = S_i + 4 \). Since \(S_1 \) is odd, then so is every \(S_i \), for 1 \(\leq i \leq n - 2 \). In addition, they are pairwise distinct. The vertex \(n - 1 \) has vertex-sum \(S_{n-1} = (n-1) + n + (n+1) + (2n-1) = 5n - 1 \) which is even. Finally, vertex 0 has vertex-sum \(S_0 = 1 + n + 2n + (n+2) = 4n + 3 \), which is odd. All that remains is to show \(S_0 \) does not appear in the set of vertex sums \(\{S_1, S_2, ..., S_{n-2}\} \). To see this, note that if \(S_0 \) is the same as the vertex-sum of some vertex in \(\{1, 2, 3, ..., n-2\} \), then \(S_0 - S_1 \) must be divisible by 4. But this difference is \(4n + 3 - (2n + 7) = 2n - 4 = 2(n-2) \). As \(n \) is odd, then \(n - 2 \) is odd. Therefore \(2(n-2) \) is not divisible by 4 which implies \(S_0 \not\in \{S_1, S_2, ..., S_{n-2}\} \). Therefore, all the vertex-sums of this labeling are pairwise distinct.

![Figure 1: antimagic labeling of \(C_n^{11} \)](image)

Observe that since \(n \) is odd, the labeling \(L \), as given in the proof of Theorem 2.1, for the edges of \(C_n \) is antimagic. Figure 1 shows the antimagic labeling of \(C_n^{11} \) using the labeling given in the proof of Theorem 2.1. Consider the graph \(C_n^2 \), where the number of vertices is even. I now describe a construction for an antimagic labeling of \(C_n^2 \) which can be extended to an antimagic labeling for \(C_n^3 \).

Theorem 2.2 If \(n > 6 \) is an even integer, then \(C_n^2 \) is antimagic.

Proof: The vertices of \(C_n^2 \) will be \(V = \{0, 1, 2, ..., n-1\} \). Let \(E \) denote the edges of the graph. Define a bijection \(L : E \rightarrow \{1, 2, ..., 2n\} \) that labels the edges of the graph as follows:

\[
L(i, j) = \begin{cases}
 2 & : i = 0, j = 1 \\
 1 & : i = 1, j = 2 \\
 n - 1 & : i = n - 3, j = n - 2 \\
 2n & : i = n - 2, j = 0 \\
 i + 1 & : j = i + 1 \text{ and } i \not\in \{0, 1, n-3, n-2, n-1\} \\
 n + 1 & : i = n - 1, j = 1 \\
 0 & : i = n - 1, j = 0 \\
 n + i + 2 & : 0 \leq i \leq n - 3 \text{ and } j = i + 2
\end{cases}
\]
By definition of the labeling L, $S_0 = 2 + n + 2n + (n + 2) = 4n + 4$, $S_1 = 1 + 2 + (n + 1) + (n + 3) = 2n + 7$,
$S_2 = 1 + 3 + (n + 2) + (n + 4) = 2n + 10$, $S_3 = 3 + 4 + (n + 3) + (n + 5) = 2n + 15$. It can be verified that $S_{i+1} = S_i + 4$ for $3 \leq i \leq n - 5$. Since S_3 is odd, S_i is odd for $3 \leq i \leq n - 4$. In addition, they are pairwise distinct. Also, $S_{n-3} = 6n - 8$, $S_{n-2} = 6n - 5 = S_{n-4} + 8$ and $S_{n-1} = 5n - 2$. Note that S_1, S_{n-2} are both odd. In fact $S_1 = S_3 - 8$ and $S_{n-2} = S_{n-4} + 8$. This implies S_1, S_2 are pairwise distinct and does not belong in the set of vertex-sums $\{S_3, S_4, ..., S_{n-1}\}$. By the labeling L, $S_2 < S_0 < S_{n-1} < S_{n-3}$ and they are all even. Since $n > 6$, we don’t have the scenario where $S_{n-3} = S_3$. Therefore all the vertex sums are distinct.

Figure 2 shows the antimagic labeling of C_{12}^2 using the labeling given in the proof of Theorem 2.2. Theorems 2.1 and 2.2 gives antimagic labelings C_n^2, for all n, except when $n = 4, 6$. Figures 3 and 4 shows that C_2^4 and C_2^6 are antimagic, respectively. This along with Theorems 2.1 and 2.2 gives the following result.

Corollary 2.3 For every $n \geq 4$, C_n^2 is antimagic.

![Figure 2: Antimagic labeling of C_{12}^2](image1)

![Figure 3: Antimagic labeling of C_4^2](image2)

3 The Graph C_n^3

In the previous section, we constructed an antimagic labeling of C_n^2, for every $n \geq 4$. In this section, we will extend those constructions to give antimagic labelings for C_n^3. We will consider the two cases of n odd and n even separately.

Theorem 3.1 If $n \geq 7$ is an odd integer, then C_n^3 has an antimagic labeling.
Proof: Recall that that the labeling L, which was used to prove Theorem 2.1, has the following properties. I will use S^L_i to denote the vertex-sum of vertex i under the labeling L, of C^2_n.

1. $S^L_0 = 4n + 3$,
2. $S^L_1 = 2n + 7, S^L_2 = 2n + 11, S^L_3 = 2n + 15$
3. $S^L_{i+1} = S_i + 4$ for $1 \leq i \leq n - 3$,
4. $S^L_{n-1} = 5n - 1$.

In addition, recall that every vertex-sum S^L_i is odd except for S^L_{n-1}, which is even. We now show how to extend the antimagic labeling L for C^2_n to an antimagic labeling M for C^3_n such that $M|C^2_n = L$. For each edge $e \in C^3_n$, assign $M(e) = L(e)$. For the edge $e = \{i, i+3\}$ where $0 \leq i < n - 3$, assign $M(e) = 2n + i + 1$. For the edge $e = \{n-3, 0\}$, we assign $M(e) = 3n - 2$. For the edge $e = \{n-2, 1\}$, we assign $M(e) = 3n - 1$. Finally, for the edge $e = \{n-1, 2\}$, we assign $M(e) = 3n$. This gives a labeling M for C^3_n, which extend the labeling L. We now show that it is an antimagic labeling of C^3_n.

Consider the vertices $0, 1, 2, n - 1$. They have vertex-sums $S_0 = (4n + 3) + (2n + 1) + (3n - 2) = 9n + 2, S_1 = (2n + 7) + (2n + 2) + (3n - 1) = 7n + 8, S_2 = (2n + 11) + (2n + 3) + (3n) = 7n + 14, and $S_{n-1} = (5n - 1) + (3n - 3) + (3n) = 11n - 4$. Since $n \geq 7$, these four vertex-sums are odd. Since $M(e) = 2n + i + 1$ for edges of the form $e = \{i, i+3\}$, where $0 \leq i < n - 3$ and $S^L_{i+1} = S^L_i + 4$, for $3 \leq i \leq n - 3$, then $S_{i+1} = S_i + 6$, for $3 \leq i \leq n - 3$. Therefore, it suffices to show that S_3 is even. But $S_3 = (2n + 15) + (2n + 1) + (2n + 4) = 6n + 20$, which is even.

Figure 5 shows the labeling of the edges of $C^3_n \setminus C^2_n$ as given in the proof of Theorem 3.1.

We now consider the case where n is even. Again, we will extend the antimagic labeling L stated in the proof of Theorem 2.2.

Theorem 3.2 If $n > 6$ is a even number that is not a multiple of 6, then C^3_n has an antimagic labeling.

Proof: Consider the labeling L used in the proof of Theorem 2.2. Recall that it has the following properties, where we use S^L_i to denote the vertex-sum of vertex i under the labeling L.

1. $S^L_0 = 4n + 4, S^L_1 = 2n + 7, S^L_2 = 2n + 10, S^L_3 = 2n + 15$,
2. $S^L_{i+1} = S_i + 4$ for $3 \leq i \leq n - 5$,
3. $S^L_{n-3} = 6n - 8, S^L_{n-2} = S_{n-4} + 8$, and $S^L_{n-1} = 5n - 2$.

Figure 4: antimagic labeling of C^2_6
Theorem 3.3 If \(n > 6 \) is an even number that is a multiple of 6, then \(C_n^3 \) has an antimagic labeling.

Proof: In the labeling \(M \) given in the proof of Theorem 3.2, make the following two modifications.

1. For the edge \(e = \{n - 2, 1\} \), we assign \(M(e) = 3n \), and
2. for the edge \(e = \{n - 1, 2\} \), we assign \(M(e) = 3n - 1 \).

With this modification, we have \(S_0 = 9n + 3 \) (odd), \(S_1 = 7n + 9 \) (odd), \(S_2 = 7n + 12 \) (even), \(S_{n-3} = 12n - 15 \) (odd) \(S_{n-2} = 12n - 9 \) (odd), \(S_{n-1} = 11n - 6 \) (even). The vertex sums \(S_i \), for \(3 \leq i \leq n - 4 \) have the same values as in the proof of theorem 3.2 and therefore are all even and pairwise distinct. The values \(S_0, S_1, S_{n-3}, \) and \(S_{n-2} \) are all odd and distinct. All that remains to show is that \(S_2 \) and \(S_{n-1} \) are not the vertex sums of some other vertex. Clearly \(S_2 \neq S_{n-1} \). To show that \(S_2 \) and \(S_{n-1} \) do not appear in \(\{S_3, S_4, \ldots, S_{n-4}, S_{n-2}\} \), it suffices to show that \(S_2 - S_1 \) and \(S_{n-4} - S_{n-1} \) are not divisible by 6. If \(S_2 - S_1 = n - 8 \) is divisible by 6, then \(n \) must be of the form \(n = 6k + 2 \). As we assume that \(n \) is a multiple of 6, \(n - 8 \) cannot be divisible by 6. Similarly, if \(S_{n-4} - S_{n-1} = n - 16 \) is divisible by 6, then \(n \) must be of the form \(6k + 4 \). As we assume

Figure 5: antimagic labeling of edges of \(C_{11}^3 \setminus C_{11}^2 \)
that \(n \) is a multiple of 6, \(n - 16 \) cannot be divisible by 6. Thus, all the vertex sums are distinct, and \(M \) is an antimagic labeling for \(n > 6 \) and a multiple of 6.

Figures 6 and 7 gives the antimagic labelings of the edges of \(C_{12}^3 \setminus C_{12}^2 \) and \(C_{16}^3 \setminus C_{16}^2 \), respectively. Figure 8 gives an antimagic labeling for \(C_{6}^3 \). Theorems 3.2 and 3.3 along with Figure 8 implies that \(C_{6}^3 \) is antimagic, for all \(n \geq 6 \).

![Figure 6: antimagic labeling of edges of \(C_{12}^3 \setminus C_{12}^2 \)](image)

Corollary 3.4 : For \(n \geq 6 \), \(C_{n}^3 \) is antimagic.

4 The graph \(C_{n}^{4} \)

In this section, I will prove that \(C_{n}^{4} \) has an antimagic labeling. I will do this by extending the labeling given in Section 2 for \(C_{n}^{3} \).

Theorem 4.1 If \(n \geq 7 \) is an odd integer, then \(C_{n}^{4} \) has an antimagic labeling.

Proof I will show how the extend the labeling \(M \) for \(C_{n}^{3} \), as given in the proof of Theorem 3.1, to an antimagic labeling \(N \) for \(C_{n}^{4} \) such that \(N|C_{n}^{3} = M \). For each edge \(e \in C_{n}^{3} \), assign \(N(e) = M(e) \). For the edge \(e = \{i, i + 4\} \), where \(0 \leq i < n - 4 \), assign \(N(e) = 3n + i + 1 \). For the edge \(e = \{n - 4, 0\} \), assign \(N(e) = 4n - 3 \). For the edge \(e = \{n - 3, 1\} \), assign \(N(e) = 4n - 2 \). For the edge \(e = \{n - 2, 2\} \), assign \(M(e) = 4n - 1 \). Finally, for the edge \(e = \{n - 1, 3\} \), we assign \(N(e) = 4n \). I claim that \(N \) is an antimagic labeling of \(C_{n}^{4} \).
Based on the labeling N, $S_0 = 16n, S_1 = 14n + 8, S_2 = 14n + 16, S_3 = 13n + 24, S_4 = 12n + 32, S_{i+1} = S_i + 8$, for $4 \leq i \leq n - 3$, and $S_{n-1} = 19n - 8$. It is easy to see that S_0, S_1, S_2, S_4 are even. As n is even, the vertex sums S_0, S_1, S_2 and S_4 are pairwise distinct. As S_4 is even, so is S_1, for $4 \leq i \leq n - 2$ and these vertex sums are distinct. As S_1 and S_{n-1} are odd, they are distinct from all the other vertex sums. They are also different from each other. It remains to show that the vertex sums S_0, S_1, S_2 are not one of the vertex sums $S_4, S_5, ..., S_{n-2}$. For S_0, $S_0 - S_4 = 4(n - 8)$ is divisible by 8 if and only if n is even. As n is odd, the vertex sum S_0 is unique. For S_1, $S_1 - S_4 = 2(n - 12)$ is divisible by 8 implies n is even. So S_1 is unique also. For S_2, $S_2 - S_4 = 2(n - 8)$ is divisible by 8 implies n is even. So S_2 is also unique. Therefore, all the vertex sums are distinct and N is an antimagic labeling of C_n^3.

\[\]

Theorem 4.2 Let $n \geq 8, n \neq 12, 14$ be an even integer. Then C_n^4 is antimagic.

Proof We begin by handling the special case where $n = 8$. To show that C_8^4 is antimagic, start with the labeling M for C_8^3, as given in the proof of Theorem 3.2. Now label the edge $(0, 4)$ with 15, the edge $(1, 5)$ with 16, the edge $(2, 6)$ with 18, and the edge $(3, 7)$ with 17. It is easy to see that this is an antimagic labeling for C_8^3.

We now suppose that $n > 8$. I will show how the extend the labeling M for C_n^3, as given in the proof of Theorem 3.3, to an antimagic labeling N for C_n^4 such that $N|C_n^3 = M$. Note that when n is not a multiple of 6, the labeling M may not be an antimagic labeling of C_n^4. For each edge $e \in C_n^3$, assign $N(e) = M(e)$. For the edge $e = \{i, i + 4\}$, where $0 \leq i < n - 4$, assign $N(e) = 3n + i + 1$. For the edge $e = \{n - 4, 0\}$, assign $N(e) = 4n - 3$. For the edge $e = \{n - 3, 1\}$, assign $N(e) = 4n - 2$. For the edge $e = \{n - 2, 2\}$, assign $M(e) = 4n$. Finally, for the edge $e = \{n - 1, 3\}$, we assign $N(e) = 4n - 1$. I claim that N is an antimagic labeling of C_n^4.

Based on the labeling labeling N, $S_0 = 16n + 1, S_1 = 14n + 9, S_2 = 14n + 15, S_3 = 13n + 23, S_4 = 12n + 32, S_{i+1} = S_i + 8$, for $4 \leq i \leq n - 5, S_{n-3} = 20n - 23, S_{n-2} = 20n - 14$ and $S_{n-1} = 19n - 11$. It is easy to see that S_4 is even, and therefore $S_4, S_5, S_6, ..., S_{n-4}$ are all even and distinct. In since $S_1 = S_3$ only when $n = 14$ and $S_{n-3} = S_{n-1}$ only when $n = 12$, $S_0, S_1, S_2, S_3, S_{n-3}, S_{n-1}$ are all odd and pairwise distinct. It remains to show that S_{n-2} is not in the set $S = \{S_4, S_5, S_6, ..., S_{n-4}\}$. This is true, since $S_{n-2} - S_{n-4} = (20n - 14) - (20n - 32) = 18 > 0$. Therefore, all the vertex sums are distinct.

At this point, we could handle the remaining cases $n = 12, 14$ separately. Instead, we give another general construction that will deal with these two cases.

Theorem 4.3 Let $n > 8$ be an even integer of the form $8k, 8k + 4$ or $8k + 6$. Then C_n^4 is antimagic.

Proof I will show how the extend the labeling M for C_n^3, as given in the proof of Theorem 3.2, to an antimagic labeling N for C_n^4 such that $N|C_n^3 = M$. Note that when n is a multiple of 6, the labeling M may not be an antimagic labeling of C_n^3. For each edge $e \in C_n^3$, assign $N(e) = M(e)$. For the edge $e = \{i, i + 4\}$,
where \(0 \leq i < n - 4\), assign \(N(e) = 3n + i + 1\). For the edge \(e = \{n - 4, 0\}\), assign \(N(e) = 4n - 3\). For the edge \(e = \{n - 3, 1\}\), assign \(N(e) = 4n\). For the edge \(e = \{n - 2, 2\}\), assign \(M(e) = 4n - 1\). Finally, for the edge \(e = \{n - 1, 3\}\), we assign \(N(e) = 4n - 2\). I claim that \(N\) is an antimagic labeling of \(C^4_n\).

Based on the labeling \(N\), \(S_0 = 16n + 1\), \(S_1 = 14n + 10\), \(S_2 = 14n + 15\), \(S_3 = 13n + 22\), \(S_4 = 12n + 32\), \(S_{i+1} = S_i + 8\), for \(4 \leq i \leq n - 5\), \(S_{n-3} = 20n - 21\), \(S_{n-2} = S_{n-4} + 16\) and \(S_{n-1} = 19n - 11\).

It is easy to see that \(S_4\) is even, and therefore \(S_5, S_6, ..., S_{n-4}, S_{n-2}\) are all even and pairwise distinct. In addition, \(S_0, S_2, S_{n-3}\) and \(S_{n-1}\) are all odd and pairwise distinct, as \(n > 8\). It remains to show that \(S_1\) and \(S_3\), which are both even and distinct from each other, cannot be in the set \(S = \{S_1, S_5, S_6, ..., S_{n-4}, S_{n-2}\}\).

To see this, suppose \(S_1\) is in the set \(S\). Then \(S_1 - S_4 = 14n + 10 - (12n + 32) = 2(n - 11)\) must be divisible by 8. But since \(n\) is even, this is not possible. Therefore, \(S_1\) is not in the set \(S\). Now, suppose \(S_3\) is in the set \(S\). Then, \(S_3 - S_4 = 13n + 22 - (12n + 32) = n - 10\) must be divisible by 8. But \(n - 10\) is divisible by 8 if and only if \(n\) is of the form \(8k + 2\). Since we assumed \(n\) is not of this form, \(S_3\) cannot be in the set \(S\).

Therefore, all the vertex sums are distinct.

\[\square\]

References

